首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-05-15
49
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
—α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、 
B、 
C、 
D、 
答案
B
解析
由α
1
+2α
2
—α
3
=β知
即γ
1
=(1,2,—1,0)
T
是Ax=β的解。同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
—γ
2
=(0,1,—2,—1)
T
,η
2
=γ
3
—γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,故选B。
转载请注明原文地址:https://jikaoti.com/ti/WFoRFFFM
0
考研数学一
相关试题推荐
已知α,β都是单位向量,夹角是π/3,求向量2α+β与-3α+β的夹角.
计算下列三重积分或将三重积分化成累次积分I=(lx2+my2+nz2)dV,其中Ω:x2+y2+z2≤a2,l,m,n为常数.
设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V.问当常数b为何值时,X与Y独立?
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:Z的概率分布;
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
随机试题
女,35岁,体检发现肝功能异常1周于2004年3月入院。体格检查:神清,皮肤巩膜无黄染,胸前有一蜘蛛痣,肝掌征(+),肝、脾未扪及。实验室检查:ALT250U/L,AST130U/L,ALB35g/L,GLB38g/L,TB17μmol/L。19
初步施工总进度计划编制完成后要对其进行检查,如果出现问题,则应进行调整。其方法是()。
《中华人民共和国合同法》规定合同应具备的条款中,()属于合同法律关系三个构成要素中“内容”的范畴。
当工程变更引起已标价工程量清单项目变化时,若清单中没有适用或类似项目,则应()。
科目编码可以为()。
中国人民银行对()有权进行检查监督。
思想政治学科的核心素养主要是()。
对未完成义务教育的未成年犯和被采取强制性教育措施的未成年人应当进行义务教育,所需经费由()予以保障。
教育的主要任务是教会人们怎样生活,教会他们运用一切能力,做到“对己对人最为有益”。这反映的教育目的论是()
CricketCricketisan【T1】_____________________gameplayedbetween2teamstryingtohita【T2】_____________________balla
最新回复
(
0
)