首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
admin
2017-05-31
55
问题
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明:
(b-a)∫
a
b
f(x)g(x)dx≥∫
a
b
f(x)dx∫
a
b
g(x)dx. (*)
选项
答案
引进辅助函数 F(x)=(x-a)∫
a
x
f(t)g(t)dt-∫
a
x
f(t)dt∫
a
x
g(t)dt 转化为证明F(x)≥0(x∈[a,b]). 由F(a)=0, F’(x)=∫
a
x
f(t)g(t)dt+(x-a)f(x)g(x)-f(x)∫
a
x
g(t)dt-g(x)∫
a
x
f(t)dt =∫
a
x
f(t)[g(t)-g(x)]dt-∫
a
x
f(x)[[g(t)-g(x)]dt =∫
a
x
[f(t)-f(x)][g(t)-g(x)]dt≥0(x∈[a,b]) 其中(x-a)f(x)g(x)=∫
a
x
f(x)g(x)dt,我们可得F(x)在[a,b]单调不减=>F(x)≥F(a)=0(x∈[a,b]),特别有 F(b)≥0 即原式成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/W1zRFFFM
0
考研数学二
相关试题推荐
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
设z=f(x,y)是由e2yz+x+y2+z=7/4确定的函数,则dz|(1/2,1/2)=________.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求dy/dx,dz/dx.
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
求下列函数图形的凹凸区间及拐点.(1)y=xe-x;(2)y=ln(x2+1).
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设生产x单位某产品的总成本C是x的函数C(x),固定成本(即C(0))为20元,边际成本函数为Cˊ(x)=2x+10(元/单位),求总成本函数C(x).
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
随机试题
以下选项中,属于社会公德内容的有
动脉导管未闭,见造影剂右向左分流,表明有
乳糖中特殊杂质蛋白质的检查所使用的试液是
在营业线改造施工测量时,并行地段测设中线应该首先满足()的要求。
纳税人欠缴应纳税款,采取转移或者隐匿财产的手段,致使税务机关无法追缴欠缴税款数额较大的行为构成()
如果基金募集不成立,则由()承担将募集资金返还到投资人账户的职责。
张某、王某、李某、赵某出资设立甲有限责任公司(下称甲公司),出资比例分别为5%、15%、36%和44%,公司章程对股东会召开及表决的事项无特别规定。下列关于甲公司股东会召开和表决的表述中,符合公司法律制度规定的有()。
目前,中国经济已经进入“新常态”,从动力上来理解,“新常态”是指()。
【2013年山东省属真题】让儿童先去玩能体现数学概念的具体游戏,然后再接触完全符号化的概念。这是()。
あの子はいつも________を見ながら宿題をします。
最新回复
(
0
)