首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e-χ-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得 (Ⅰ)力F对运动质点做的功与质点运动路径无
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e-χ-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得 (Ⅰ)力F对运动质点做的功与质点运动路径无
admin
2018-06-12
41
问题
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e
-χ
-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得
(Ⅰ)力F对运动质点做的功与质点运动路径无关;
(Ⅱ)若L是由点A(-1,1)到点8(1,0)逐段光滑的有向曲线,则∫
L
Pdχ+Qdy=
.
选项
答案
条件(Ⅰ)即∫
L
Pdχ+Qdy在全平面与路径无关[*],即 f〞(χ)=e
-χ
-f′(χ),f〞(χ)+f′(χ)=e
-χ
. 现求此方程的解. 这也是可降阶的二阶方程.令p=f′(χ),两边乘μ(χ)=e
∫dχ
=e
χ
得 (e
χ
p)′=1. 积分并注意p(0)=f′(0)=0得 e
χ
f′(χ)=χ,f′(χ)=χe
-χ
. 再积分得f(χ)=-(χ+1)e
-χ
+C. 现由条件(Ⅱ)定出常数C. 因积钋与路径无关.取L如图27—3所示的路径, [*] 则有∫
L
Pdχ+Qdy=∫
1
0
Q(-1,y)dy+∫
-1
1
P(χ,0)dχ =∫
1
0
f′(-1)dy+∫
-1
1
f(χ)dχ =e+∫
-1
1
[-(χ+1)e
-χ
+C]dχ =e+(χ+1)e
-χ
|
-1
1
+e
-χ
|
-1
1
+2C =[*], [*]C=0. 因此,f(χ)=-(χ+1)e
-χ
.
解析
转载请注明原文地址:https://jikaoti.com/ti/Vx2RFFFM
0
考研数学一
相关试题推荐
下列级数中属于条件收敛的是
设函数f(χ)连续,除个别点外二阶可导,其导函数y=f′(χ)的图像如图(1),令函数y=f(χ)的驻点的个数为P,极值点的个数为q,曲线y=f(χ)拐点的个数为r,则
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及z轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于()
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上.任意一点P(x,y)作该曲线的切线及到z轴的垂线,上述两直线与z轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S
设顾客在某银行窗口等待服务的时间X(单位:分)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求y的分布律及P{Y≥1}.
设试证:对任意的常数λ>0,级数收敛.
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
随机试题
简述个性的基本特征。
关于细菌的稀释法药敏试验的叙述,错误的是
描述炎性浸润期褥疮,下述哪项不正确:
城市生活垃圾好氧分解过程一般在有氧和水的情况下产生,其分解产物有()。
中国某企业与新加坡某公司拟在中国组建一家具有法人资格的中外合作经营企业,双方草签了合同。合同约定的以下事项中,哪些是符合我国法律规定的?()
当你的同事把公司的实际情况告诉顾客,使得即将谈成的一份生意丢失时,下面的说法你认可的是()。
“喜者见之则喜,忧者见之则忧”反映了()。
行政程序的基本原则为()。
已知A为三阶方阵,且满足A2一A一2E=O,行列式0
Completetheformbelow.WriteNOMORETHANTHREEWORDSAND/ORANUMBERforeachanswer.CUSTOMER’SINFORMATIONDETAILSName:【L
最新回复
(
0
)