首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-01-25
37
问题
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数x
1
,x
2
,…,x
s
,使得 x
1
β
1
+x
2
β
2
+…x
s
β
s
=0将题设的线性表示式代人上式并整理,得 (x
s
+x
1
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0由于α
1
,α
2
,…,α
s
线性无关,故有 [*]此方程组的系数行列式为s阶行列式: [*]因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即x
1
,x
2
,…,x
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数x
1
,x
2
,…,x
s
,使x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0.这时,向量组β
1
,β
2
,…,β
s
线性相关.
解析
本题考查向量组线性相关与线性无关的基本概念.注意本题问题归结为齐次方程组(*)是存在非零解还是只有零解的问题,亦即方程组(*)的系数矩阵的秩是小于s还是等于s的问题.运用本题的推导方法,可证明下述的一般结论:
设向量组α
1
,α
2
,…,α
r
,线性无关,又有(其中α
ij
为常数,i=1,…,r;j=1,…,s)
β
1
=α
11
α
1
+α
21
α
2
+…+α
r1
lα
r
β
2
=α
12
α
1
+α
22
α
2
+…+α
r2
α
r
… β
s
=α
1s
α
1
+α
2s
α
2
+…+α
rs
α
r
则向量组β
1
,β
2
,…,β
s
线性无关<=>矩阵A=(α
ij
)
r×s
的秩为s.
转载请注明原文地址:https://jikaoti.com/ti/VwaRFFFM
0
考研数学三
相关试题推荐
[2005年]设二维随机变量(X,Y)的概率密度为求P(Y≤1/2|X≤1/2).
(96年)考虑一元二次方程χ2+Bχ+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率P和有重根的概率q.
[*]
[2006年]设总体X的概率密度为其中θ(0<θ<1)是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.记N为样本值x1,x2,…,xn中小于1的个数.求:θ的最大似然估计.
[2008年]设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=-1,0,1),Y的概率密度为记Z=X+Y.求Z的概率密度fZ(z).
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是________。
设A为3阶矩阵,丨A丨=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则丨BA*丨=__________.
求极限
设总体X的概率分布为(0<θ<)(Ⅰ)试利用总体X的简单随机样本值3,1,3,0,3,1,2,3,求θ的矩估计值;(Ⅱ)设X1,X2,…,Xn是来自X(其未知参数θ为(Ⅰ)中确定的)的简单随机样本,当n充分大时,取值为2的样本个数N满足=Ф(x),求
设α1,α2,...,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
随机试题
TheUnitedStatesiswidelyrecognizedtohaveaprivateeconomybecauseprivatelyownedbusinessesplay【C1】________roles.TheA
白居易的诗《暮江吟》为()。
急性酒精中毒意识障碍期主要表现是
婴儿营养不良的主要原因是
小儿中度脱水。丢失水分约为体重的
存款人为注册资金验资而开设的临时存款账户,在验资期间只收不付。()
甲公司为增值税一般纳税人,主要从事机电产品的生产销售,并下设运输部门负责所售货物的运输服务并对外承接其他运输劳务。2016年2月发生如下业务:(1)销售机电产品一批,产品不含税销售收入200万元;另取得含税货运收入20万元,价款已经全部收到。
杜鹃花:映山红
简述教育研究的基本原则,并举例说明。
若(X,Y)服从二维正态分布,则:①X,Y一定相互独立;②若ρxy=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任意线性组合服从一维正态分布。上述几种说法中正确的是().
最新回复
(
0
)