首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
设A= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2016-05-09
34
问题
设A=
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中任意向量ξ
2
和ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(1)对增广矩阵(A[*]ξ
1
)作初等行变换,则 [*] 得Aχ=0的基础解系(1,-1,2)
T
或者Aχ=ξ
1
的特解(0,0,1)
T
. 故ξ
2
=(0,0,1)
T
+k(1,-1,2)
T
或ξ
2
=(k,-k,2k+1)
T
,其中k为任意常数. 由于A
2
=[*],对增广矩阵(A
2
[*]ξ
1
)作初等行变换,有 [*] 得A
2
χ=0的基础解系(-1,1,0)
T
,(0,0,1)
T
. 又A
2
χ=ξ
1
有特解([*],0,0)
T
.故 ξ
3
=([*],0,0)
T
+t
1
(-1,1,0)
T
+t
2
(0,0,1)
T
或ξ
3
=([*]-t,t,t)
T
,其中t
1
,t
2
为任意常数. (2)因为 [*] 所以,ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/VVPRFFFM
0
考研数学一
相关试题推荐
[*]交换积分顺序,如图2-1所示,故
设A,B是2阶矩阵,且A相似于B,A有特征值λ=1,B有特征值μ=-2,则|A+2AB-4B-2E|=____________.
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设A=,B是2阶矩阵,AB=A且B≠E,则a=________
设P(x0,y0)为椭圆3x2+a2y2=3a2(a>0)在第一象限部分上的一点,已知在P点处椭圆的切线、椭圆及两坐标轴所围图形D的面积的最小值为2(1-1/4π)求点P的坐标及a的值
设α,β是3维单位正交列向量,则二次型f(x1,x2,x3)=xT(2ααT+ββT)x的规范形为()
设向量组(Ⅰ):a1,a2,…,ar可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
下列正方形中数字呈现一定的规律性。根据这种规律,可知m的值为:
牙本质中龋时牙髓受刺激后可造成
A、呼吸衰竭B、DICC、两者均有D、两者均无重症蝮蛇咬伤可有
归属于五行中“金”的五气是
机电工程中,线槽配线施工技术的要求有()。
根据船舶吨税法律制度的规定,应税船舶负责人应当白海关填发吨税缴款凭证之日起()日内向指定银行缴清税款。
某教师在一次单元测验中,设计了如下试题,考查学生对串联电路性质的理解。电阻R1、R2串联在电路中,已知R1>R2,则通过R1和R2的电流I1和I2的大小关系为()。A.I1>I2B.I1<I2C.I1=I2
随机变量X服从参数为2的指数分布,则P{-2<X<4|X>0}=______.
EversinceitwasclaimedthatamedicinemadefromtheChinesethree-stripedboxturtlecouldcurecancer,demandfortheprodu
道氏理论认为,趋势的()是确定投资的关键。
最新回复
(
0
)