首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2019-07-12
22
问题
(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则(u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
方法一:设f(x)=x
2
,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
<u
2
,但{u
n
}={n
2
}发散,排除C;
设
则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但
收敛.排除B;
设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,u
1
>u
2
,但{u
n
}={一lnn}发散,排除A。故应选D。
方法二:由拉格朗日中值定理,有
u
n+1
一u
n
=f(n+1)一f(n)=f′(ξ
n
)(n+1—n)=f′(ξ
n
),
其中n<ξ
n
<n+1(n=1,2,…)。
由f"(x)>0知,f′(x)单调增加,故
f′(ξ
1
)<f′(ξ
2
)<…<f′(ξ
n
)<…,
所以
于是当u
2
一u
1
>0时,有
故选D。
转载请注明原文地址:https://jikaoti.com/ti/VSQRFFFM
0
考研数学一
相关试题推荐
设ABC.试证明:P(A)+P(B)-P(C)≤1.
求下述线性方程组的解空间的维数:并判断ξ1=[9,-1,2,-1,1]T是否属于该解空间.
曲线x2+y2+z2=a2与x2+y2=2az(a>0)的交线是()
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
曲线的凹区间是______.
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5,设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
试确定常数a与n的一组值,使得当x→0时—ln[e(1+x2)]与axn为等价无穷小.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该f生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行和第j行,得到的矩阵记成B,则下列五个关系①|A|=|B|;②r(A)=r(B);③A,B等价;④A~B;⑤A,B合同.其中正确的有()
设,则当x→0时,两个无穷小的关系是().
随机试题
公民、法人或者其他组织认为行政机关的具体行政行为所依据的()不合法,在对具体行政行为申请行政复议时,可以一并向行政复议机关提出对该规定的审查申请
“五四”新文学运动的主要代表人物是()
"Wessexnovels"byThomasHardydescribedthesimpleandbeautifulthoughprimitive______,whichwasgraduallydeclininganddis
普鲁卡因穿透力较弱,不宜用于
免疫球蛋白主要分布于
(用户名:41;账套:401;操作日期:2013年1月31日)在“正式人员1”工资类别下,录入工资变动数据。姓名:王武事假天数:5
以下不属于受教育者义务的是()。
家庭社会工作的要素包括()。
有以下定义:structdata{inti;charc;doubled;}x;以下叙述中错误的是()。
Sleepisveryancient.Intheelectroencephalographic(脑电图仪的)senseweshareitwithalltheprimates(灵长类动物)andalmostallthe
最新回复
(
0
)