首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=[α1,α2,α3,α4]T是四阶矩阵,α1,α2,α3,α4是四维列向量.若方程组Ax=β的通解是 [1,2,2,1]T+k[1,一2,4,0]T, 又B=[α1,α2,α1,β一α4],求方程组Bx=α1一α2的通解.
已知A=[α1,α2,α3,α4]T是四阶矩阵,α1,α2,α3,α4是四维列向量.若方程组Ax=β的通解是 [1,2,2,1]T+k[1,一2,4,0]T, 又B=[α1,α2,α1,β一α4],求方程组Bx=α1一α2的通解.
admin
2015-12-22
38
问题
已知A=[α
1
,α
2
,α
3
,α
4
]
T
是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量.若方程组Ax=β的通解是
[1,2,2,1]
T
+k[1,一2,4,0]
T
,
又B=[α
1
,α
2
,α
1
,β一α
4
],求方程组Bx=α
1
一α
2
的通解.
选项
答案
已知方程组的通解要能由解的结构找出基础系及特解,还要能用线性方程组的向量形式求出齐次方程组与非齐次线性方程组的解. 解 由方程组Ax=β的解的结构,可知 秩(A)=秩(α
1
,α
2
,α
3
,α
4
)=3, 且 α
1
+2α
2
+2α
3
+α
4
=β, α
1
—2α
2
+4α
3
=0,故α
1
,α
2
,α
3
线性相关. 因为 B=[α
3
,α
2
,α
1
,β一α
4
]=[α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
], 且α
1
,α
2
,α
3
线性相关,故秩(B)=2,所以Bx=0的一个基础解系只含n一秩(B)=4一2=2个解向量. 由[*]知,[0,一1,1,0]
T
是方程组Bx=α
1
一α
2
的一个解. 又由 [*] 可知[4,一2,1,0]
T
,[2,一4,0,1]
T
是Bx=0的两个线性无关的解,故Bx=α
1
一α
2
的通解为 [0,一1,1,0]
T
+k
1
[4,一2,1,0]
T
+k
2
[2,一4,0,1]
T
. 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/VPriFFFM
0
考研数学二
相关试题推荐
鲁迅曾这样评价过曹操,“曹操是一个很有本事的人,至少是一个英雄。我虽不是曹操一党,但无论如何,总是非常佩服他”。下列典故中的主人公不是曹操的一项是()。
给定资料1.2017年中央一号文件是新世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农民合
数据挖掘(Datamining)是指从大量的存储数据中利用统计、情报检索、模式识别、在线分析处理和专家系统(依靠过去的经验)等方法或技术,发现隐含在其中、事先不知道但又是潜在有用的信息和知识的信息处理过程。根据上述定义,下列选项不属于数据挖掘应用的是:
以下实例中,利用“移开可燃物”原理灭火的是()。
户外真人秀节目《奔跑吧兄弟》最近热播,收获了较高的关注度和美誉度。作为一种游戏,其过程是随机的,结局是未知的,充满了悬念和不确定性,刺激着人们的观看欲望,调动人们去想象推理。当然,该节目不仅仅满足了观众的娱乐需求,而且在“润物细无声”中传递了正能量。其传递
证明托尔曼的认知地图理论的实验有()。
一元线性回归方程的显著性有哪几种检验方法?()
对函数f(χ)(4-t)ln(1+t)dt().
设f有一阶连续的偏导数,且f(χ+y,χ-y)=4(χ2-χy-y2),则χf′χ(χ,y)+yf′y(χ,y)为().
设α=(1,1,-1)T是A=的一个特征向量.(Ⅰ)确定参数a,b及特征向最α所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由.
随机试题
以不正当手段取得医师执业证书,由发给证书的卫生行政部门给予的行政处罚是
下列工程变更情况中,应由业主承担责任的有()。
下列各项中,关于各类银行存款账户的特点说法正确的是()。
操作技能的特点是()
当国家公务员认为自己受到单位的不公平待遇时,可以向哪个部门提出申诉?()
()不发生财产所有权的转移。
根据《GB8566-88计算机软件开发规范》,软件生命周期中的第一阶段是(22)。
A、B、C、D、A
Mother’sDayInBritain,Mother’sDayfallsonafewweeksbeforethefestivalofEaster./Butitisalwaysintheearlyspr
Anewstudyshowsthatregularlyeatingfastfoodisn’tjustbadforyourwaistline,itcanalsodamageyourliverinwaysthat
最新回复
(
0
)