首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
(04年)设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
admin
2019-03-11
28
问题
(04年)设n阶矩阵A的伴随矩阵A
*
≠O,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系 【 】
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
由A
*
≠O知A
*
至少有一个元素A
ij
=(-1)
i+j
M
ij
≠0,故A的余子式M
ij
≠0,而M
ij
为A的n-1阶子式,故r(A)≥n-1,又由Aχ=b有解且不唯一知r(A)<n,故r(A)=n-1,因此,Aχ=0的基础解系所含向量个数为n-r(A)=n(n-1)=1,只有B正确.
转载请注明原文地址:https://jikaoti.com/ti/UzBRFFFM
0
考研数学三
相关试题推荐
设z=z(x,y)是由方程xy+x+y-z=ex所确定的二元函数,求
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)
曲线y=+ln(1+ex)的渐近线的条数为
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{y≤2}.
一条自动生产线连续生产n件产品不出故障的概率为e-λ,n=0,1,2,….似设产品的优质品率为p(0<p<1),如果各件产品是否为优质品相互独立.若已知在某两次故障间该生产线生产了k件优质品,求它共生产m件产品的概率.
设n阶方阵A与B相似,A2=2E,则|AB+A-E|=_______.
设下述命题成立的是()
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
随机试题
下列情况下,能使组织液生成减少的是
将健康概念及与健康有关的事物或现象进行量化的过程称为
变更价款的确定方法有()。
[背景资料]某建筑工程,建筑面积3.8万m2,地下1层,地上16层。施工单位(以下简称“乙方”)与建设单位(以下简称“甲方”)签订了施工总承包合同,合同工期600d。合同约定,工期每提前(或拖后)1d,奖励(或罚款)1万元。乙方将屋面和设备安装两项工程的
海关于2006年4月17日(星期一)填发海关专用缴款书。为避免产生滞纳金,纳税义务人最迟应缴纳税款的日期是()。
导游人员对旅游者提出的侮辱其人格尊严或者违反其职业道德的不合理要求()。
甲乙两地相距150千米,画在一幅地图上是3厘米,这幅地图的比例尺是________;从这幅地图上量得乙丙两地的图上距离是5厘米,则乙丙两地间的实际距离是_________千米。
下列关于幼儿身体发展特点的描述正确的是()
三个运动员跨台阶,台阶总数在100~150级之间,第一位运动员每次跨3级台阶,最后一步还剩2级台阶。第二位运动员每次跨4级台阶,最后一步还剩3级台阶。第三位运动员每次跨5级台阶,最后一步还剩4级台阶。这些台阶总共有()级。
Dr.CorleyholdsaPh.D.inanthropology,and-----abookabouttheNiledeltalastOctober.
最新回复
(
0
)