首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
admin
2016-04-11
47
问题
设4元齐次线性方程组(I)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1) 满足方程组(I)(显然是(Ⅱ)的解),故方程组(I)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
本题(1)求基础解系属基本题目;而(2)主要考查齐次线性方程组通解的概念、两方程组公共解的概念及其求法.注意,寻求两方程组(I)与(Ⅱ)的公共解,也就是寻求它们的解集合的交集合中的向量,或者说在(Ⅱ)的解集合中寻找那些满足方程组(I)的解向量.
转载请注明原文地址:https://jikaoti.com/ti/UlPRFFFM
0
考研数学一
相关试题推荐
设z=z(x,y)满足x2dz/dx+y2dz/dy=z2,记f=1/z-1/x(x≠0),则df/du=________。
在区间[0,1]上,函数f(x)=nx(1一x)n的最大值记为M(n),则=.
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
设y=y(x)有一阶连续导数,y(0)=1,且满足求∫0+∞y(x)dx
设积分dx收敛,则()
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型?
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x-y)dxdy=∫-aaf(t)(a-|t|)dt,其中D为矩形区域:|x|≤a/2,|y|≤a/2,a>0为常数;
χeχ+1=的根的个数为().
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
甲某去世时,留下一套价值百万元的房屋,无其他遗产,其配偶及两个儿子对该遗产的分割采用的方法不应是()。
患者季某,男性,67岁。腹大胀满不舒,早宽暮急,面色苍黄,脘闷纳呆,神倦怯寒,四末不温,尿少不利,舌淡胖而紫,脉沉弦无力,其证候为
男性,61岁。慢性咳嗽、喘、咳痰30年。近2年常出现下肢水肿,气短加重,受凉后发热,咳黄痰伴神志模糊,嗜睡36小时。血压95/60mmHg,球结膜充血水肿,心率100次/分,肺底有水泡音,无病理反射。最可能的诊断是
马斯洛认为需要的最高层次为
根据国发[2006]131号文件的有关精神,国家统一制订工业用地出让最低价标准。这里的“工业用地出让最低价标准”是指()。A.工业用地评估价不得低于的数值B.工业用地出让底价和成交价均不得低于的数值C.工业用地出让底价的实际数值D.工业用地出让
统计管理相对人的(),是统计行政复议产生的前提。
关于资产可收回金额的计量,下列说法中正确的有()。
社会支持系统通常是指来自社会各方面包括父母、亲戚、朋友等给予个体的精神或物质上的帮助和支持的系统,它的目标是使个体重新恢复到和谐的心理状态和优良的生活中。根据上述定义,下列不属于社会支持系统的是()。
Ifanyonewantstosaysomethinginclass,you______putupyourhandsfirst.
IfCatlinwasthepainteroftheAmericanIndian,andBierstadttheportrayeroftheRockyMountains,theartistoftheWestern
最新回复
(
0
)