首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
admin
2019-01-14
21
问题
设A为3阶非零矩阵,且满足a
ij
=A
ij
(i,j=1,2,3),其中A
ij
为a
ij
的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为 ( )
选项
A、1
B、2
C、3
D、4
答案
B
解析
由a
ij
=A
ij
(i,j=1,2,3)及伴随矩阵的定义可知:A
*
=A
T
,那么|A
*
|=|A
T
|,也即|A|
2
=|A|,即|A|(|A|一1)=0.又由于A为非零矩阵,不妨设a
11
≠0,则|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+a
12
2
+a
13
2
>0,故|A|=1.因此,A可逆.并且AA
T
=AA
*
=|A|E=E,可知A是正交矩阵.可知①、④正确,③错误.从题目中的条件无法判断A是否为对称矩阵,故正确的只有两个,选B.
转载请注明原文地址:https://jikaoti.com/ti/UW1RFFFM
0
考研数学一
相关试题推荐
设其中a<b<c,证明:F’(a)≠0且F’(b)≠0,F’(c)≠0.
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
已知λ=0是矩阵的特征值,求a的值,并求正交矩阵Q,使Q-1AQ=A.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(I)D={(x,y)|y>0},并确定函数u(x,y)的表达式;(Ⅱ)D={(x,y)|x2+y2>0}.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<P<1.(I)试求:的概率分布;(Ⅱ)证明:.
设有级数,(I)若=0,又(u2n—1+u2n)=(u1+u2)+(u3+u4)+…+收敛,求证:收敛.(Ⅱ)设u2n—1=。u2n=(n=1,2,…),求证:(—1)n—1u2收敛.
幂级数的和函数及定义域是______·
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设f(x)=是连续函数,求a,b的值.
随机试题
内伤发热的特点有
骨性关节炎最早期的病理变化发生在
从权益的角度来看,现实中的房地产估价对象包括()等。
城市规划实施的行政机制发挥作用,产生应有效力的条件是:
甲公司欲投资购买A、B、C三只股票构成投资组合,这三只股票目前的市价分别为8元/股、10元/股和12元/股,β系数分别为1.2、1.9和2,在组合中所占的投资比例分别为20%、45%、35%,目前的股利分别为0.4元/股、0.6元/股和0.7元/股,A股票
对审核结论的理解,正确的有()。
商业银行资金缺口管理的主要内容是什么?[武汉大学2001研]
欧元区
如果要设计一个可以在Dreamweaver中预览的网页文件,请问在创建时应该是()。
Sincethedawnofhumaningenuity.peoplehavedevisedevermorecunningtoolstocopewithworkthatisdangerous,boring,burd
最新回复
(
0
)