首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
admin
2019-12-26
30
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
3
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.即β
T
α
i
=0(i=1,2,…,r).
选项
答案
设有一组数x
1
,
2
,…,x
r+1
,使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/TyiRFFFM
0
考研数学三
相关试题推荐
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η2=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,一2,1)T,η3=(一2,一1,2)T,它们的特征值依次为1,2,3,求A.
已知α=(1,1,一1)T是A=的特征向量,求a,b和α的特征值λ.
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设AB=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
随机试题
卡介苗接种后结素阳性反应与自然感染后阳性反应主要区别是
量化是指将连续变化的灰度或密度等模拟信息,转化成离散的数字信息的过程,有关量化的描述,正确的是
中度持续发作的支气管哮喘患者应用糖皮质激素的原则是
地方性会计法规是指省、自治区、直辖市人民代表大会及其常委在与会计法律、会计行政法规不相抵触的前提下制定的地方性法规。 ( )
甲借款给乙,约定于2014年3月1日前还清本息,丙承担连带责任保证。2014年3月1日后,乙没有还款,甲也一直没有催乙还款。2017年4月1日,因乙一直未还款,甲遂要求丙承担保证责任。根据民法相关规定,下列关于丙保证责任承担的说法中,正确的是()。
IamsureCindywillbeabletofindthehotel—shehasaprettygood________ofdirection.
马克思指出:“纸币流通的特殊规律只能从纸币是金的代表这种关系小产生,这一规律简单说来就是:纸币的发行最限于它象征地代表的金(或银)的实际流通的数量。”这句话表明:纸币的流通规律是
DOM is a platform and language -(66)API that allows programs and scripts to dynamically access and update the content, structure
下列模式中,能够给出数据库物理存储结构与物理存取方法的是()。
However,themassmediaarewithus,______,andthereisusturningback.
最新回复
(
0
)