首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:在(0,a]单调下降.
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:在(0,a]单调下降.
admin
2017-08-18
13
问题
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:
在(0,a]单调下降.
选项
答案
【证法一】 对F(x)求导得F’(x)=xf’’(x)<0 ([*]x∈(0,a]). 又F(0)=0,则F(x)<0([*]x∈(0,a]),即xf’(x)一f(x)<0(0<x≤a). 【证法二】 f’’(x)<0意味着f(x)是凸函数,从而曲线在任一点切线的下方,即[*]t∈[0,a]有 f(t)<f(x)+f’(x)(t—x) ([*]x∈[0,a],x≠t).特别地,令t=0时,f(0)=0<f(x)一f’(x)x, 即xf’(x)一f(x)<0 (x∈(0,a]). 【证法三】 由微分中值定理,[*]x∈(0,a],[*]ξ∈(0,x)使得 xf’(x)一f(x)=xf’(x)一[f(x)一f(0)]=xf’(x)一xf’(ξ) =x[f’(x)一f’(ξ)]<0(因为f’(x)单调减少). 【证法四】 由泰勒公式,[*]x∈(0,a],[*]ξ∈(0,x),有 0=f(0)=f(x)+f’(x)(一x)+[*]f’’(ξ)(一x)
2
. 由f’’(ξ)<0[*]f(x)一xf’(x)>0,即xf’(x)一f(x)<0 ([*]x∈(0,a]).
解析
要证
在(0,a]单调下降,只需证明导数
.为此令
F(x)=xf’(x)一f(x),则只需证F(x)<0(
x∈(0,a]).
转载请注明原文地址:https://jikaoti.com/ti/TvVRFFFM
0
考研数学一
相关试题推荐
(2005年试题,23)设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记求:Y1与Y1=n的协方差Cov(Y1,Yn).
(2005年试题,23)设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记求:一的方差D(Yi),i=1,2,…,n;
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.若α,β线性相关,则rA
(2003年试题,二)设向量组I:α1,α2……αs可由向量组Ⅱ:β1β2……βs线性表示,则().
(2010年试题,18)求幂级数的收敛域与和函数.
设,B是2阶矩阵,且满足AB=B,k1,k2足任意常数,则B=
已知极限求常数a,b,c.
设D为曲线y=x3与直线y=x围成的两块区域,求二重积分
的极大值点是x=___________,极小值点是x=___________.
随机试题
有闭经溢乳表现的不孕症妇女进行内分泌检查时,下列检查不必要的是()
可引起精液果糖降低的是
用氢化物发生原子荧光光度法测硒,在用纯硒配制贮备液时,下列溶解方法中,正确的是
患儿男,1岁,近3个月开始出现口唇青紫,并逐渐加重,诊断为法洛四联症,此时护士正确的处理方法是()
(2011年多项选择第3l题)关于企业法律顾问与律师的关系的说法,正确的是()。
下列事实中,当事人无需举证的是()。
所谓日清月结,是指出纳员办理库存现金出纳业务,必须做到()。
下列公式中,()是计算项目难度的公式。
用“音乐,足球,网络,电脑游戏,鼓,吉他,金属,朋友,信念,胜利”等词,编一个故事。
进入2012年以来一些企业开始审慎评估之前的并购效果以及新的并购机会,海外并购开始趋于理性化、审慎化。2005年中国企业海外并购事件开始发生,2008年并购进入活跃阶段。从有关资料了解到,2005—2012年,中国企业完成的196件海外并购事件分布于三个
最新回复
(
0
)