首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=4x22-3x32-4x1x3+4x1x2+8x2x3。 (Ⅰ)写出二次型的矩阵形式; (Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
设f(x1,x2,x3)=4x22-3x32-4x1x3+4x1x2+8x2x3。 (Ⅰ)写出二次型的矩阵形式; (Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
admin
2019-05-14
30
问题
设f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
-4x
1
x
3
+4x
1
x
2
+8x
2
x
3
。
(Ⅰ)写出二次型的矩阵形式;
(Ⅱ)用正交变换法求二次型的标准形,并写出正交阵。
选项
答案
(Ⅰ)令A=[*],则f(x
1
,x
2
,x
3
)=x
T
Ax。 (Ⅱ)由二次型矩阵的特征方程|λE-A|=[*]=(λ+6)(λ-1)(λ-6)=0, 解得特征值λ
1
=-6,λ
2
=1,λ
3
=6。 当λ
1
=-6时,由(-6E-A)x=0,得特征向量ξ
1
=[*] 当λ
2
=1时,由(E-A)x=0,得特征向量ξ
2
=[*] 当λ
3
=6时,由(6E-A)x=0,得特征向量ξ
3
=[*] 由施密特正交化方法得 [*] 令Q=[*],则Q
T
AQ=[*],于是有 f(x
1
,x
2
,x
3
)=x
T
Ax[*]-6y
1
2
+y
2
2
+6y
3
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/TUoRFFFM
0
考研数学一
相关试题推荐
设曲线г位于曲面z=χ2+y2上,г在χy平面上投影的极坐标方程为r=e*θ.(Ⅰ)求г上柱坐标(r,θ,z)=(1,0,1)的点M0的切线L的直角坐标方程;(Ⅱ)求£在平面П:χ+y+z=1的投影L′的方程.
设f(χ,y)有二阶连续偏导数,满足=0,且在极坐标系下可表示成f(χ,y)=g(r),其中r=,求f(χ,y).
设二维随机变量(X,Y)服从二维正态分布,其分布参数μ1=μ2=0,σ12=σ22=1,ρ=/2.求证:(Ⅰ)关于X的边缘分布是正态分布;(Ⅱ)在X=χ条件下,关于Y的条件分布也是正态分布.
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
已知矩阵A=和B=,试求可逆矩阵P,使P-1AP=B.
设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求(Ⅰ)随机变量Z=2X+Y的密度函数;(Ⅱ)Cov(Y,Z),并判断X与Z的独立性.5.设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
与直线L1:及直线L2:都平行且经过坐标原点的平面方程是_______.
(2009年)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是由过点(4,0)且与椭圆相切的直线绕x轴旋转而成.求S1及S2的方程;
设则在区间(一1,1)上()
随机试题
在B2012A龙门刨床主拖动系统电路中,加速度电位器RP1、RP2的作用是()。
作物生长发育取决于土壤中数量最不足的养分,这一规律称为__________。
犯罪构成客观要件中的选择要件包括()。
财产保险的分类中,按()划分,财产保险分为财产损失保险、信用保证保险、责任保险。
医学配方奶粉的适用人群是早产儿和先天代谢缺陷患儿。()
根据《教育法》对受教育者义务的规定,以下看法不正确的是()。
党的十八届四中全会首次以全会的形式专题研究部署全面推进依法治国这一基本治国方略。()
WhatisSallydoingnow?
(1)Historyisriddledwithsciencedenial.FromNewton’slawofgravitationtoHanaokaSeinshu’suseofanesthesia(麻醉),there’
Anadvanceddegreeinbusinessstudiesisnowamustforanyambitiousandfocusedexecutivehopingtoclimbthecareerladderi
最新回复
(
0
)