首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
admin
2019-03-30
33
问题
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
[*]
证明存在ξ∈(0,3),使f"(ξ)=0.
选项
答案
因f(x)在[2,3]上连续,设f(x)在此区间上的最大值为M,最小值为m,则x∈[2,3]时,有 m≤f(2)≤M,m≤f(3)≤M, 故 [*] 由介值定理知,存在δ∈(2,3),使[*]于是有f(0)=f(η)=f(δ). 对f(x)分别在[0,η]上,在[η,δ]上由罗尔定理知,至少存在一点ξ∈(0,η)[*](0,2),满足f’(ξ
1
)=0;至少存在一点ξ
2
∈(η,δ)[*](0,3),满足f’(ξ
2
)=0. 又因f’(x)在[ξ
1
,ξ
2
]上可导,且f’(ξ
1
)=f’(ξ
2
),由罗尔定理知,至少有一点ξ∈(ξ
1
,ξ
2
)[*](0,3),使f"(ξ)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/TUBRFFFM
0
考研数学三
相关试题推荐
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u)。
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
设z=f(z2一y2,exy),其中f具有连续二阶偏导数,求
A、 B、 C、 D、 D结合二重积分的定义可得
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
微分方程xy’+y=0满足初始条件y(1)=2的特解为________。
设曲线y=f(x)与y=x2—x在点(1,0)处有公共的切线,则=________。
求y’’-2y’-e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
(2004年)设f(x)在(一∞,+∞)内有定义,且则()
随机试题
室性心动过速
下列哪项不符合脐带特点
慢性肾盂肾炎是指
影响问题解决的主要因素有()。
学生:读书
根据以下资料,回答以下问题。2011年1~8月,上海市接待“新马泰”游客()人次。
下列行为中,应以非法经营罪(不考虑数额或情节)定罪处罚的是()
在一个袋中装有a个白球,b个黑球,每次摸一球且摸后放回重复n次.已知摸到白球k次的条件下,事件B发生的概率为,则P(B)=_____________.
Inthe【B1】______annualBiblereadingmarathonthevolunteersreadreverentlyfrom【B2】______to_______________【B3】______.Atth
Gateswasbornand【B1】_____inSeattle.At,theageof14,hefoundedacomputerprogrammingcompanywiththreefriends,andthey
最新回复
(
0
)