首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)fˊ(x)dx+∫01f(x)gˊ(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)fˊ(x)dx+∫01f(x)gˊ(x)dx≥f(a)g(1).
admin
2016-09-13
56
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,fˊ(x)≥0,gˊ(x)≥0.证明:对任意a∈[0,1],有∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(a)g(1),a∈[0,1],则 Fˊ(a)=g(a)fˊ(a)-fˊ(a)g(1)=fˊ(a)[g(a)-g(1)]. 因为x∈[0,1]时,fˊ(x)≥0,gˊ(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 Fˊ(a)=fˊ(a)[g(a)-g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(1)g(1) =∫
0
1
[g(x)f(x)]ˊdx-f(1)g(1)=g(1)f(1)-g(0)f(0)-f(1)g(1) =-f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx-f(a)g(1)≥0, 即 ∫
0
a
g(x)fˊ(x)dx+∫
0
1
f(x)gˊ(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://jikaoti.com/ti/SfxRFFFM
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 B
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
将函数分别展开成正弦级数和余弦级数.
用比较判别法判断的敛散性.
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
已知当x→0时,函数f(x)=3sinx-sin3x与cxk是等价无穷小,则k=_______,c=______.
随机试题
只在本企业的竞争对手中购进出版物,是不具有忠诚展的客户。()
申请人对植物新品种复审委员会的决定不服的,可以自接到通知之日起()日内向人民法院提起诉讼。
A.胃失和降,逆气动膈B.胃气壅滞,气逆干中C.肝气犯胃,肝胃不和D.脾胃虚寒,胃中无火E.痰瘀互结,食道狭窄呃逆的病机是
当利用建筑物外立面混凝土柱内的主钢筋作防雷引下线时,接地测试点应离地()。
多层砖砌体房屋突出屋顶的(),构造柱应伸到顶部,并与顶部圈梁连接。
鲁迅批判中国人的劣根性,批判中国人的面子心理、看客心态、马虎作风,但他的批判是建立在自省和自剖基础上的,不是_________,而是带有一种悲悯和________的。填入画横线部分最恰当的一项是:
当x>0时,证明:
将E-R图转换为关系模式时,实体和联系都可以表示为
Manyteachersbelievethattheresponsibilitiesforlearningliewiththestudent.【C1】______alongreadingassignmentisgiven,
A、Afirst-classletter.B、Urgentmail.C、Arailwayletter.D、Anairwaypacket.A
最新回复
(
0
)