首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2017-06-26
37
问题
已知3阶矩阵A的第1行是(a,b,c),矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由于AB=O,知B的每一列都是方程组Aχ=0的解,因此Aχ=0至少有r(B)个线性无关解,所以Aχ=0的基础解系至少含r(B)个向量,即3-r(A)≥r(B),或r(A)≤3-r(B).又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,有1≤r(A)≤1,于是r(A)=1; 当k=0时,r(B)=1,有1≤r(A)≤2,于是r(A)=1或r(A)=2. 当k≠9时,由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数 当k=9时,分别就r(A)=2和r(A)=1讨论如下: 如果r(A)=2,则Aχ=0的基础解系由一个向量构成. 又因为[*]=0,所以Aχ=0的通解为 χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零, 所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,从而η
1
,η
2
可作为Aχ=0的基础解系,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/SWSRFFFM
0
考研数学三
相关试题推荐
向量组a1,a2,…,as线性无关的充分条件是().
设函数f(x)对任意x均满足等式f(1+x)=af(*),且f’(0)=b,其中a,b为非零常数,则().
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=,其中A的逆矩阵为B,则a=_________.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
(2017年德州齐河)低碳经济模式的基础是()
左心衰竭可能的症状有( )。
男性,20岁,运动员,2小时前运动时不慎扭伤右膝,剧痛,查体:右膝关节肿胀、活动受限,不能主动伸直膝关节,X线摄片阴性,考虑半月板损伤可能,急诊入院。假如已确诊为内侧半月板桶柄状破裂,其治疗方案,最好选用
普通感冒临床表现中一般不出现:
患者,男,28岁,体重60kg。被沸水烫伤颈部、左上肢、胸腹部、双小腿和双足。创面布满水疱,有剧痛。右大腿散在烧伤面积约5掌,创面焦痂呈皮革样,不痛。目前患者存在低血容量性休克。护士补液时应遵循的原则是
生活垃圾填埋场场址不应选在()。
根据《工程建设项目施工招标投标办法》(国家七部委局第30号令),当投标人投标文件中出现用数字表示的数额与用文字表示的数额不一致时,除招标文件另有约定外,以()为准,调整后的报价经投标人确认后产生约束力。
下列选项中,属于非正式沟通的内容是()
有三个关系R、S和T如下:则由关系R和S得到关系T的操作是()。
______(众所周知),toomuchstresscancausedisease.
最新回复
(
0
)