首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角
admin
2018-11-20
55
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和曰对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n—j个分量都是0,而i一1+n—j=n+(i—j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://jikaoti.com/ti/SPIRFFFM
0
考研数学三
相关试题推荐
设n阶矩阵A满足A2+A=3E,则(A一3E)一1=________.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵若A有一个特征值为3,求a;
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=________.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
甲公司购入A股票准备长期持有。A股票去年的每股股利为2元,预计年股利增长率为8%,当前每股市价为40元,投资者要求的报酬率为12%,A股票的价值为()元。
检查治疗时易与卵巢相混淆的是
A.类风湿关节炎B.膝关节化脓性关节炎C.膝关节滑膜结核D.膝关节全关节结核关节穿刺注药治疗无效时行病灶清除+滑膜切除
乳房肉瘤的治疗是
由企业总法律顾问牵头的法律事务组织模式大致分为集中模式、分散模式及()。
货币政策工具对货币供应量的影响表现在()。
下列法律行为中,须经双方当事人意思表示一致才能成立的是()。(2012年)
关于“法律规范体系”和“党内法规体系”,下列说法错误的是
TheDifferenceBetweenSpokenandWrittenEnglishI.Thedefinitionofspeechandwritingtwo【T1】methodsofcommunication【T1】_
HavingKidsMakesYouHappy?[A]WhenIwasgrowingup,ourformerneighbors,whomwe’llcalltheSloans,weretheonlycoupleon
最新回复
(
0
)