首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
admin
2016-07-29
31
问题
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)=μ.
选项
答案
若f’(A)=f’(B),则取ξ=a或ξ=b即可.若f’(A)≠f’(B),为了确定起见,无妨设f’(A)>f’(B)(对f’(A)<f’(B)的情形可类似证明).当μ=f’(A)或μ=f’(B)时相应取ξ=a或ξ=b即可.从而只需证明μ介于f’(A)与f’(B)之间的情形定理的结论也成立.引入辅助函数F(x)=f(x)一μ(x一a),则F’(A)=f’(A)一μ>0,由导数的定义即得[*]从而存在x
1
∈(a,b)使得[*]于是F(x
1
)>F(A),这表明F(A)不是F(x)在[a,b]上的最大值.此外还有F’(B)=f’(B)一μ<0,同样由导数定义得[*]从而存在x
2
∈(x
1
,b)使得[*]于是F(x
2
)>F(B),这表明F(6)也不是F(x)在[a,b]上的最大值.综上所述即知必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最大值,由F(x)的可导性必有F’(ξ)=0即f’(ξ)=μ.类似可证,在相反的情形下必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最小值,由F(x)的可导性也有F’(ξ)=0即f’(ξ)=μ成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/SIxRFFFM
0
考研数学三
相关试题推荐
民主法治、公平正义、诚信友爱、充满活力、安定有序、人与自然和谐相处,是构建社会主义和谐社会的总要求。公平正义指的是()。
疫情发生以来,基层党组织的战斗堡垒作用得到充分发挥。广大基层党组织切实担负起属地防控工作的重要责任,充分发挥党建引领下的基层社会治理体系的优势,统筹居委会、村委会物业服务公司、业委会、网格员、志愿者等各方力量,有序参与基层疫情防控斗争,构筑群防群治抵御疫情
材料1 当前,全国疫情防控形势持续向好,生产生活秩序加快恢复。同时,境外疫情扩散蔓延,对世界经济产生不利影响,给我国经济发展带来新的挑战。当此之际,我们要牢记习近平总书记强调的“用全面、辩证、长远的眼光看待我国发展”,准确把握当前复杂经济形势,坚定我国
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设周期为2π的周期函数f(x)在区间[-π,π)上的表达式为f(x)=e2x,试把它展开成傅里叶级数,并求级数的和.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
简述睢景臣《[般涉调]哨遍》(高祖还乡)采用代言体形式的作用。
阅读欧阳修《五代史伶官传序》中的一段文字,回答问题:《书》曰:“满招损,谦得益。”忧劳可以兴国,逸豫可以亡身,自然之理也。故方其盛也,举天下之豪杰,莫能与之争;及其衰也,数十伶人困之,而身死国灭,为天下笑。夫祸患常积于忽微,而智勇多困于所溺。岂独
A、拟胆碱药B、缩瞳剂C、β受体阻滞剂D、前列腺素衍生物E、碳酸酐酶抑制剂应用于开角型青光眼降眼压治疗最新的药()
[背景资料]甲公司投资建设一幢地下一层、地上五层的框架结构商场工程,乙施工企业中标后,双方采用《建设工程施工合同》(示范文本)(GF—1999—0201)签订了合同。合同采用固定总价承包方式,合同工期为405天,并约定提前或逾期竣工的奖罚标准为每天5万元
保险人对被保险人的财产及其有关利益在发生保险责任范围内的灾害事故而遭受经济损失时给予补偿的保险是()。
按照企业会计准则规定,企业会计的确认、计量和报告应当以权责发生制为基础。()
端砚产于广东省,利用石眼花纹雕刻的砚台尤为名贵,有“一两端石一两金”之说。()
西方传教士在华兴办的第一所学校是1839年建立的______。
A、maketheparentsbeawareoftheimportanceofequalityinthefamily.B、makepeopleknowthatgirlsandboysshouldbetreate
A、Heaccusedthemofthetheft.B、Heraisedtherents.C、Herefusedtoprolongtheirlandlease.D、Heforcedthemtoabandonthe
最新回复
(
0
)