首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1). 证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2017-11-09
37
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).
证明:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(0)=0,且F(z)在[0,1]可导,则 F′(χ)=2f(χ)∫
0
χ
f(t)dt-f
3
(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 记g(χ)=2∫
0
χ
f(t)dt-f
2
(χ),则g(χ)在(0,1)可导,即 g′(χ)=2f(χ)-2f(χ)f′(χ)=2f(χ)[1-f′(χ)], 由于0<f′(χ)<1,χ∈(0,1),则f(χ)在[0,1]内递增. 则当0<χ≤1时,f(χ)>f(0)=0, 于是g′(χ)>0,χ∈(0,1),则g(χ)在[0,1]递增, 即当0<χ≤1时,g(χ)>g(0)=0, 所以,当0<χ≤1时,F′(χ)=f(χ)g(χ)>0, 即F(χ)在0≤χ≤1时递增,故当0<χ≤1时,F(χ)>F(0)=0, 特别地,有F(1)>0,即[∫
0
1
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0, 所以[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
解析
转载请注明原文地址:https://jikaoti.com/ti/S5KRFFFM
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)上可导,,则a=________.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
电信公司将n个人的电话资费单寄给n个人,但信封上各收信人的地址随机填写,用随机变量X表示收到自己电话资费单的人的个数,求E(X)及D(X).
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
用变量代换x=lnt将方程+e2xy=0化y关于t的方程,并求原方程的通解.
积分=()
盒子中有n个球,其编号分别为1,2,…,n,先从盒子中任取一个球,如果是1号球则放回盒子中去,否则就不放回盒子中;然后,再任取一个球,若第二次取到的是k(1≤k≤n)号球,求第一次取到1号球的概率.
随机试题
人群易感性
在诊室中为龋病敏感者涂氟防龋时,使用的溶液是
脾胃虚寒忌用,反藜芦的药物是
SinceMr.Carloenrolledinnightclasses,hehas______aknowledgeabletrainer.
高校社团活动现在遭到批评,批评的不是该不该有社团,而是高校对社团的经营方式。目前的高校社团组织应该改进,使参加社团的多数人受益,而不是少数人的成功。如果高校社团经营好了,在大学生培养中的作用就不只是“第二课堂”。这段文字意在说明:
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料1.某
有变量定义语句Dimmax,minAsString,则可以知道max的类型是
LifetimeemploymentintheJapanesecompanymeansthattheemployeeLifetimeemploymentinfluencesone’s
Sincetheauthor’sunflatteringreferencestoherfriendswereso______,shewassurprisedthather______wererecognized.
Todayourknowledgeoffoodandwhatitdoesforourbodiesisfarmoreadvancedthanthatoftheoldtimes.Nowweknowaboutv
最新回复
(
0
)