首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
admin
2019-03-21
51
问题
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,
证明:
(I)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内至少存在两个不同实根.
选项
答案
(I)由题设知f(x)连续且[*]存在,所以f(0)=0. 由[*]与极限的保号性可知,存在a∈(0,1)使得[*]即f(a)<0. 又f(1)>0,所以存在b∈(a,1)[*](0,1),使得f(b)=0,即方程f(x)=0在区间(0,1)内至少存在一个实根. (Ⅱ)由(I)知f(0)=f(b)=0,根据罗尔定理,存在c∈(0,b)[*](0,1),使得 f’(c)=0. 令F(x)=f(x)f’(x),由题设知F(x)在区间[0,b]上可导,且 F(0)=0,F(c)=0,F(b)=0. 根据罗尔定理,存在ξ∈(0,c),η∈(c,b),使得F’(ξ)=F’(η)=0,即ξ,η是方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内的两个不同实根.
解析
转载请注明原文地址:https://jikaoti.com/ti/RyLRFFFM
0
考研数学二
相关试题推荐
求下列极限:
设y=(1+x2)arctanx,求y’.
求极限ω=
如图8.13所示.当x∈[0,t2]时,[*]≤t(t>0),于是[*]
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设a,b均为常数,a>一2,a≠0,求a,b为何值时,使 ∫1+∞[一1]dx=∫01ln(1一x2)dx.
设y=f(x)=讨论f(x)在x=0处的连续性;
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机试题
下列说法不正确的是()。
恶性葡萄胎与良性葡萄胎的主要不同点在于
以下哪项不是原发肾病综合征的病理改变
施工图概算审查的主要内容不包括( )。
万利达音乐手机是由汪涵代言的,在这则广告中画面首先是一个日落黄昏的广场镜头,镜头慢慢转换。汪涵扮演一位旅者,正在广场上用万利达手机拍下此刻的美好,此刻耳边传来优美的旋律,他顺着歌声去寻找,此时出现画外音“总有一种美丽值得追寻,总有一种邂逅让人心动”,遗憾的
岭南园林具有轻盈、自在与敞开的特色。()
人的学习要用眼睛看、用耳朵听、用嘴巴说以及用手写等,这种识记表现的是()。
()年,联合国第二十六届大会恢复了中华人民共和国在联合国的合法席位。
_____otherwisedirectedbyadoctor,thismedicineshouldbetakenthreetimesaday.
A、Shewantedtopleasetheman.B、Sheboughttheticketonimpulse.C、Shewantedtoinviteherprofessortotheconcert.D、Shem
最新回复
(
0
)