首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
admin
2020-10-30
38
问题
设3阶实对称矩阵A的特征值为1,2,-1,α
1
=(2,3,一1)
T
,α
2
=(1,a,2a)
T
分别是特征值1,2的特征向量,求齐次线性方程组(A
*
-2E)x=0的通解.
选项
答案
因为A的特征值为1,2,-1,所以|A|=-2,进一步得A
*
的特征值为-2,-1,2,A
*
-2E的特征值为-4,-3,0.由于A是3阶实对称矩阵,从而A
*
-2E也是3阶实对称矩阵,因此A
*
一2E相似于对角矩阵[*],故[*] 于是齐次线性方程组(A
*
-2E)x=0的基础解系中含有3-R(A
*
-2E)=1个线性无关的解向量. 由于实对称矩阵不同的特征值对应的特征向量是正交的,所以α
1
T
α
2
=2+3a-2a=0,由此得a=-2. 设A的对应于特征值-1的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则[*]对上面齐次线性方程组的系数矩阵实施初等行变换,得[*] 其同解方程组为[*] 取α
3
=(2,-1,1)
T
. 因为A的对应于特征值-1的特征向量是A
*
的对应于特征值2的特征向量,也是A
*
-2E 对应于特征值0的特征向量,即是齐次线性方程组(A
*
-2E)x=0的一个基础解系,故(A
*
-2E)x=0的通解为x=k(2,-1,1)
T
,其中K为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/RiaRFFFM
0
考研数学三
相关试题推荐
设连续型随机变量X的概率密度为f(x)=F(X)为X的分布函数,E(X)为X的数学期望,则P{F(X)>E(X)—1}=________.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(05年)求幂级数在区间(-1,1)内的和函数S(χ).
(1991年)求微分方程=x2+y2满足条件y|x=e=2e的特解.
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
设四阶方阵A的秩为2,则其伴随矩阵A*的秩为_____________.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
-3.把行列式的各行都加到第1行,得本题考查行列式的计算.注意4阶及4阶以上的行列式已不再具有对角线计算法则.高阶行列式的基本计算方法是利用行列式的性质简化计算,化为三角形行列式及按一行(列)展开(降阶)是计算中最常用的两种方法.元素是数字的行
随机试题
A.瑞香科B.马兜铃科C.茜草科D.兰科E.豆科药材表面紫红色或红褐色,切面有致密的纹理。质硬,有油性。气微香,味微苦,该药材来源于()
地图语言不包括()。
下列行为中不符合暂停施工规定的是()。
请根据下面提供的单据完成关于《出境货物报检单》填制的单项选择题。“信用证号”一栏应填写()。
某年2月1日,甲公司与乙公司签订买卖合同,根据合同约定,甲公司向乙公司购买一批建筑材料,价款为600万元,由甲公司向乙公司支付定金125万元,在2月25日之前交付,并且约定由某建筑公司于3月2日向甲公司交货,甲公司在验货合格后的次日以商业承兑汇票方式结算。
3,7,16,41,90,()
设有4台主机A,B,C和D都处在同一物理网络中,它们的IP地址分别为192.155.28.112、192.155.28.120、192.155.28.135和192.155.28.202,子网掩码都是255.255.255.224,请回答:若不改变主机
【B1】【B3】
NarratorListentopartofalectureinthechemistryclass.Nowgetreadytoanswerthequestions.Youmayuseyournot
China’suniversitygraduatesarefacingthetoughestjobmarket.Whydoestheunemploymentrateamonguniversitygraduatesworri
最新回复
(
0
)