首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出. (I)求a1,2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3,α4的一
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出. (I)求a1,2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3,α4的一
admin
2015-04-30
37
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,一1,一3)
T
,α
4
=(0,0,3,3)
T
线性表出.
(I)求a
1
,
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并把其他向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出.
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表出,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解.对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:a
1
一a
2
+a
3
一a
4
=0. (Ⅱ)向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是:α
1
,α
2
,α
3
,而 α
4
=一6α
1
+6α
2
—3α
3
. ⑦ (Ⅲ)方程组①的通解是: x
1
=a
1
一a
2
+2a
3
—6t,x
2
=a
2
—2a
3
+6t,x
3
=a
3
—3t,x
4
=t,其中t为任意常数,所以β=(a
1
—a
2
+2a
3
—6t)α
1
+(a
2
—2a
3
+6t)α
2
+(a
3
—3t)α
3
+tα
4
,其中t为任意常数. 由②把α
4
代入,得 β=(a
1
一a
2
+2a
3
)α
1
+(a
2
—2a
3
)a
2
+a
3
α
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/QmNRFFFM
0
考研数学三
相关试题推荐
我们党在长期执政条件下,能够战胜各种困难,取得举世瞩目的成就,就是因为我党能保持先进性和创造力,其决定性因素是()。
中共中央提出在抗日的条件下与民族资产阶级重建统一战线的新政策的会议是
党中央强调,生态文明建设是关乎中华民族永续发展的根本大计,保护生态环境就是保护生产力。下列关于生态环境保护的表述,正确的有几项?()①生态环境保护是区域发展的基本前提和刚性约束②推动长江经济带发展要加强生态环境共保联
2022年1月1日,《区域全面经济伙伴关系协定》(RCEP)生效实施,全球最大自由贸易区正式启航。RCEP现有()个成员国,从人口数量、经济体量、贸易总额三方面看,均占全球总量的约()。
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0.
设函数f(x)在(-∞,+∞)内连续,且试证:若f(x)为偶函数,则F(x)也是偶函数;
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在一个ξ,使f(ξ)=ξ.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
有关距骨骨折的叙述错误的是
对投资资产的处置,具有审批权的主体有
宫内节育器放置的禁忌证为
A.海藻玉壶汤B.桃红四物汤C.右归饮D.柴胡疏肝汤E.逍遥散
工程咨询公司以分包商身份承担工程项目咨询时,直接服务对象是()。
下列属于数据复制和粘贴程序的操作有()。
下列关于电容传声器的说法正确的是()。
有价无市:价格高,但交易的不多。一般指行情很高,但销售形势并不好。有市无价:市场上交易频繁,但价格不高。一般指供应量大导致价格上不去。根据以上定义,以下说法正确的是()。
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
A、 B、 C、 A所给出的问题是一个询问是否带了收据的一般疑问句。选项(A)的回答,“对不起,我忘了给你”,是符合语境的正确答案。
最新回复
(
0
)