首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2019-01-23
422
问题
二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
-4y
2
2
-4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
(1)Q的第1列α
1
=[*]是A的属于10的特征向量,其[*]倍η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)
T
正交, 因此就是方程χ
1
+2χ
2
+3χ
3
=0的非零解. 求出此方程的一个正交基础解系η
2
=(2,-1,0)
T
,η
3
=(1,2,[*])
T
. 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,-4η
2
,-4η
3
),用初等变换法解得 [*] (2)将η
2
,η
3
单位化得α
2
=[*](2,-1,0)
T
, α
3
=[*](3,6,-5)
T
. 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://jikaoti.com/ti/Qh1RFFFM
0
考研数学一
相关试题推荐
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
已知随机变量X1与X2相互独立且分别服从参数为λ1,λ2的泊松分布,P{X1+X2>0}=1一e-1,则E(X1+X2)2=________.
设α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
A,B都是n阶矩阵,并且B和E+AB都可逆,证明:B(E+AB)-1B-1=E一B(E+AB)-1A.
计算曲面积分,I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
计算下列三重积分或将三重积分化成累次积分I=(x+y+z)dV,其中Ω:x2+y2+z2≤2az,≤z(a>0).
求下列极限:
求下列空间中的曲线积分I=(x2一yz)dx+(y2一xz)dy+(z2一xy)dz,其中г是沿螺旋线x=acosθ,y=asinθ,z=,从A(a,0,0)到B(a,0,h)的有向曲线.
设函数f(x)在[0,+∞)上连续,且满足方程f(t)=,试求f(t).
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求方程组AX=0的通解;
随机试题
网络管理首先必须有网络地址,一般可采用实名制地址。()
A.鸦胆子、半边莲B.白花蛇舌草、山慈菇C.败酱草、红藤D.重楼、拳参E.鱼腥草、芦根治疗肺痈的药组是
对于外伤轻微,仅有镜下少量红细胞,能自行排尿而尿线尚粗者的处理
A、麻黄碱B、槲皮素C、小檗碱D、东莨菪碱E、青蒿素属于异喹啉类的生物碱是()。
下列不属于市政给水管网作为消防水源的条件的是()。
住宅专项维修资金是指专项用于住宅共用部位、共用设施设备保修期满后的()的资金。
下列不属于“世界三大夜景”的是()。
内部言语是不出声音的,是对自己的言语,因此又称为______。
马克思说:“火药、罗盘针、印刷术——这是预兆资产阶级社会到来的三项伟大发明。”这句话反映出()。
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
最新回复
(
0
)