首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量. (2)求矩阵B
admin
2014-01-26
41
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=α
1
—4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值-2的特征向量. 由B=A-4A+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的3个特征值为 μ
1
=-2,μ
2
—1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又因为A是对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
T
α
2
=0, α
1
T
α
3
=0, 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 其基础解系为[*],故可取[*]。 故B的全部特征值的特征向量为:[*],其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数. (2)方法一 令P=(α
1
,α
2
,α
3
)=[*], 得[*] 方法二 将α
2
,α
3
正交化得β
2
=α
2
=[*] [*] 将α
1
,β
2
,β
3
单位化得[*] 令[*] 则 P
-1
BP=P
T
BP=[*] 故[*]
解析
[分析]根据特征值的性质可立即得B的特征值,然后由B也是对称矩阵可求出其另外两个线性无关的特征向量.
转载请注明原文地址:https://jikaoti.com/ti/QgDRFFFM
0
考研数学二
相关试题推荐
(15年)设{χn}是数列.下列命题中不正确的是【】
考虑一元二次方程χ2+Bχ+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率p和有重根的概率q.
(2015年)设{xn}是数列.下列命题中不正确的是()
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
设线性方程组(1)与方程x1+2x2+x3=a一1(2)有公共解,求a的值及所有公共解。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
8259A有两种中断触发方式_______和_______。
视杆细胞感受器电位的特点是
患者平素性急易怒,时有胁胀,近日胁胀加重,伴食欲不振,食后腹胀,便溏,舌苔薄白,脉弦。其证候是
下列被称为“元神之府”的是()
病毒性心肌炎的临床表现包括()。
制定和实施质量控制制度的主要目的是在以下()两个方面向会计师事务所及其人员提出合理保证。
下列构成经济结构对商业银行的影响的有()。
导游服务经济性体现在()。
国家经济实力的大小,通常从()方面来衡量。
A、 B、 C、 B题目为建议对方尝一下蛋糕的建议疑问句。Wouldyoulike…常用来表示建议。
最新回复
(
0
)