首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
admin
2018-04-14
31
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f’(0)=0,求f(u)的表达式。
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),分别对x,y求导得 [*] =f"(u)e
2x
cos
2
y+f’(u)e
x
cosy, [*] =f"(u)e
2x
sin
2
y-f’(u)e
x
cosy, 则 [*]=f"(u)e
2x
=f"(e
x
cosy)e
2x
。 由已知条件[*]=(4z+e
x
cosy)e
2x
,可知f"(u)=4f(u)+u。这是一个二阶常系数非齐次线性微分方程。 对应齐次方程的通解为 f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数。 设非齐次方程的特解为y
*
=ax+b,代入可得a=-1/4,b=0。 对应非齐次方程特解为y
*
=-1/4u。故非齐次方程通解为f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u。 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/QfdRFFFM
0
考研数学二
相关试题推荐
[*]
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
[*]
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
设y=y(x)是区间(-π,π)内过点的光滑曲线.当-π
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
求微分方程y’=y(1-x)/x的通解。
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
随机试题
油脂可以调节面筋的形成程度,制成不同工艺的面团。()
下列各进制数中最小的数是
脊髓纵裂常见于
患者,男,38岁,慢性肾小球肾炎病史8年,因反复发作病情逐渐加重,患者非常焦虑,故常发脾气,护士应对患者目前的情况采取必要的护理措施,其中重要性最低的是()
预应力筋外包层材料,严禁使用()。
关于宏观经济指标,下列说法错误的是()。
甲公司是一家火力发电上市企业,2012年12月31日的股票价格为每股5元。为了对当前股价是否偏离价值进行判断,公司拟对企业整体价值进行评估,有关资料如下:(1)甲公司2012年的主要财务报表数据(2)对甲公司2012年度的财务数据进行修正,作为预测基
公安机关的人民警察(),可以优先乘坐公共交通工具。
钥匙:门锁
以下有关光纤通信的说法中错误的是()。
最新回复
(
0
)