首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2016-05-09
42
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
由题意可知,线性方程组(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数. 这是因为: 方程组(Ⅰ)和(Ⅱ)的系数矩阵分别为A,B,则根据题意可知AB
T
=0,因此 BA
T
=(AB
T
)
T
=0。 可见A的n个行向量的转置为(Ⅱ)的n个解向量. 由于B的秩为n,因此(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,又因为A的秩是2n与 (Ⅰ)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成 (Ⅱ)的一个基础解系,因此得到(Ⅱ)的上述的一个通解.
解析
转载请注明原文地址:https://jikaoti.com/ti/QVPRFFFM
0
考研数学一
相关试题推荐
设f’(x0)=0,f’’(x0)>0,则必存在一个正数δ,使得()
A、 B、 C、 D、 A
设f(x)=,g(x)在z=0连续且满足g(x)=1+2x+o(x)(x→0).又F(x)=f[g(x)],则F’(0)=________
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设f(x)在(-∞,+∞)内连续,n为正整数证明:∫0nπxf(|sinx|)dx=nπ/2∫0nπf(|sinx|)dx
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求正较变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
已知平面π:x-2y+z-3=0,直线L:,则π与L的夹角是________.
随机试题
设备采购监理的主要工作内容包括()。
美国的SAE和.ASTM金属与合金统一数字代号体系简称UNU体系。
关于颞下颌关节的描述,正确的是()
从主体角度,可以把法律行为分为()。
在一般销售方式下已经发出但尚未确认销售收入的商品成本应计入()科目。
根据以下材料,回答问题。若保持2009年的年增速不变,到2011年底我国网民人数约为()亿。
设X为总体,(X1,X2,…,Xn)为来自总体X的样本,且总体的方差DX=σ2,令S02=则E(S02)=____________.
在窗体上画一个名称为Text1的文本框和一个名称为Command1的命令按钮,然后编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,nAsInteger
计算机的操作系统是
A、Inthehospital.B、Inthehotel.C、Inthepostoffice.D、Inthelibrary.D问题问的是对话发生的地方。根据对话可知,女士在找书,结合选项,可以确定对话最有可能是发生在图书馆。故选D
最新回复
(
0
)