首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值;
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值;
admin
2017-06-26
28
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设条件并利用矩阵乘法,可得 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 所以B=[*] (Ⅱ)因为α
1
,α
2
,α
3
是线性无关的三维列向量,可知矩阵C=(α
1
,α
2
,α
3
)可逆,且由AC=CB可得C
-1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值. 由|λE-B|=[*]=(λ-1)
2
(λ-4)=0 得矩阵B的特征值,也即矩阵A的特征值为 λ
1
=λ
2
=1,λ
3
=4. (Ⅲ)对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)χ=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
对应于λ
3
=4,解齐次线性方程组(4E-B)χ=0,得基础解系 ξ
3
=(0,1,1)
T
令矩阵Q=(ξ
1
,ξ
2
,ξ
3
)=[*] 则有Q
-1
BQ=[*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 P=CQ=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
) 则有P
-1
AP=Q
-1
BQ=diag(1,1,4)为对角矩阵,故P即为所求的可逆矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/QLSRFFFM
0
考研数学三
相关试题推荐
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设矩阵A=,且|A|=-1.又设A的伴随矩阵A*,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则().
已知,那么矩阵A=_______.
微分方程满足y(0)=一1的特解是___________.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
曲线
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
求下列曲线在xOy面上的投影曲线的方程:
随机试题
患者,男,40岁,入院体检:血压160/96mmHg,并伴有十二指肠溃疡,不宜选用的药物是
根据《麻醉药品和精神药品管理条例》,医疗机构抢救病人急需麻醉药品而本医疗机构无法提供时,以下行为错误的是
下列费用中,可计入土地取得费的有()。
牛市环境下,恒定混合策略最有利。( )
下列费用发生时应当计入当期损益,而不属于存货成本的是()。
法律对社会发展能否起进步作用,主要取决于()。
在PowerBuilder的数据类型中,integer是多少位带符号数?
设有学生(学号,姓名,性别,出生日期)和选课(学号,课程号,成绩)两个关系,查询选修课程号为"101"课程得分最高的同学,正确的SQL语句是( )。
有以下程序#includemain(){intc;while((c=getchar())!=′\n){switch(c-′2′){case0:case1:putchar(c+4);case2:putcha
Askedwhatjobtheywouldtakeiftheycouldhaveany,peopleunleashtheirimaginationsanddreamofexoticplaces,powerfulpo
最新回复
(
0
)