[2016年] 已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.

admin2019-04-05  45

问题 [2016年]  已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.

选项

答案 先证f(x)在(0,[*])内无零点,再证在[*]内有唯一零点,为此证f(x)在该区间内单调,且[*]<0. 证 (II):因f'(x)=[*],当x∈(0,[*])时,2x一3π<0,故f'(x)<0.所以当x∈(0,[*])时,f(x)单调减少,而f(0)=0,故当x∈(0,[*])时,f(x)<f(0)=0, 即f(x)在(0,[*])内无零点. 因x∈(0,[*])时,f(x)单调减少,故f([*])<f(0)=0. 知,f(x)在区间[*]上的平均值为[*] 又x∈[*]时,f'(x)=[*]而cosx<0,2x一3π<0,故f'(x)>0, 即x∈[*]时,f(x)单调增加,设f(x)在[*]内的平均值为[*],则 [*]内f(x)<0)>0. 因f(x)在[*]单调增加,且f[*]<0,由命题1.1.7.5知,在该区间内f(x)有唯一零点,而f(x)在(0,[*])内无零点,因而f(x)在(0,[*])内有唯一零点.

解析
转载请注明原文地址:https://jikaoti.com/ti/QKLRFFFM
0

随机试题
最新回复(0)