首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于χ1,χ2∈[0,1],有|f(χ1)-f(χ2)|<.
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于χ1,χ2∈[0,1],有|f(χ1)-f(χ2)|<.
admin
2017-04-11
21
问题
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于
χ
1
,χ
2
∈[0,1],有|f(χ
1
)-f(χ
2
)|<
.
选项
答案
联系f(χ
1
)-f(χ
2
)与f′(χ)的是拉格朗日中值定理.不妨设0≤χ
1
≤χ
2
≤1.分两种情形: 1)若χ
2
-χ
1
<[*],直接用拉格朗日中值定理得 |f(χ
1
)-f(χ
2
)|=|f′(ξ)(χ
2
-χ
1
)|=|f′(ξ)||χ
2
-χ
1
|<[*]. 2)若χ
2
-χ
1
≥[*],当0χ
1
<χ
2
<1时,利用条件f(0)=f(1)分别在[0,χ
1
]与[χ
2
,1]上用拉 格朗日中值定理知存在ξ∈(0,χ
1
),η∈(χ
2
,1)使得 |f(χ
1
)-f(χ
2
)|=|[f(χ
1
)-f(0)]-[f(χ
2
)-f(1)]| ≤|f(χ
1
)-f(0)|+|f(1)-f(χ
2
)| =|f′(ξ)χ
1
|+|f′(η)(1-χ
2
)| <χ
1
+(1-χ
2
)=1-(χ
2
-χ
1
)≤[*], ①当χ
1
>0且χ
2
≥[*]时,有 |f(χ
1
)-f(χ
2
)|=|f(0)-f(χ
2
)|=|f(1)-f(χ
2
)|=|f′(η)(1-χ
2
)|<[*]. ②当χ
1
≤[*]且χ
2
=1时,同样有 |f(χ
1
)-f(χ
2
)|=|f(χ
1
)-f(1)|=|f(χ
1
)-f(0)|=|f′(ξ)(χ
1
-0)|<[*]. 因此对于任何χ
1
,χ
2
∈[0,1]总有 |f(χ)-f(χ)<[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/QDzRFFFM
0
考研数学二
相关试题推荐
设
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定a的值。
将函数f(x)=ex展开成x的幂级数。
证明:当x>0时,(x2-1)lnx≥(x-1)2.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
当x→+∞时,下列中的变量,哪些是无穷小量?哪些是无穷大量?哪些既不是无穷小量也不是无穷大量?
设函数S(x)=∫0x|cost|dt,(1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1);(2)求.
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设,试讨论f(x)在x=0处的连续性和可导性.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设x→0时,与,ak为同阶无穷小,其中m与n为正整数.则k=()
随机试题
患者,女性,24岁。Graves病患者,甲状腺弥漫性肿大,突眼,近日由于感冒加重突然出现乏力,大汗,心率160次/分,体温39.3℃,血压160/106mmHg,检测血浆T32.79nmol/L,T4457.5nmol/L。该患者最可能诊断是
先天性巨结肠症的病理解剖特点有哪些?
A.每日尿量<100mlB.每日尿量<300mlC.每日尿量<200mlD.每日尿量<100mlE.每日尿量<50ml学龄儿童少尿的标准为
吸收剂量的SI单位是
患者,男性,64岁。因肺心病导致呼吸困难,采用半坐卧位的原因是
已知a是大于零的常数,f(x)=1n(1+a-2x),则f’(0)的值应是()。
根据《支付结算办法》的规定,支票的存款账户结清时,存款人必须将全部剩余空白支票自行销毁。()
出口货物的完税价格,由海关以该货物向境外销售的成交价格为基础审查确定,并应包括货物运至我国境内输出地点装载前的()。
完全垄断市场是指在市场上只有一个供给者和众多需求者的市场结构。在我国,下列行业属于完全垄断市场的有()。
【合州之战】
最新回复
(
0
)