首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得Am-1α≠0,Amα=0(规定A0为单位矩阵),证明向量组α,Aα,…,Am-1α线性无关.
admin
2020-04-30
46
问题
设A为n阶矩阵,α为n维列向量,若存在正整数m,使得A
m-1
α≠0,A
m
α=0(规定A
0
为单位矩阵),证明向量组α,Aα,…,A
m-1
α线性无关.
选项
答案
证法1:设有一组数k
0
,k
1
,…,k
m-1
使 k
0
α,k
1
Aα,…,k
m-1
A
m-1
α=0, (1) 用A
m-1
左乘(1)式两边,得 k
1
A
m-1
α=0, 又A
m-1
α≠0,故k
0
=0.从而(1)式变为 k
1
Aα+…+k
m-1
A
m-1
α=0, (2) 再用A
m-2
左乘(2)式两边得k
1
A
m-1
α=0,又A
m-1
α≠0,故k
1
=0.以此类推,可得k
0
=0,k
1
=0,…,k
m-1
=0,从而α,Aα,…,A
m-1
α线性无关. 证法2:反证法,设α,Aα,…,A
m-1
α线性相关,则存在一组不全为零的数k
0
,k
1
,…,k
m-1
,使 k
0
α+k
1
Aα+…+k
m-1
A
m-1
α=0, 设从左起第一个不为零的数为k
i
,上式变为 k
i
A
i
α+k
i+1
A
i+1
α+…+k
m-1
A
m-1
α=0. 由于A
m
α=0,用A
m-i-1
左乘等式两边得k
i
A
m-1
α=0. 由于k
i
≠0,则A
m-1
α=0,矛盾,从而α,Aα,…,A
m-1
α线性无关.
解析
本题考查向量组线性无关的概念,可以用定义证明.根据本题的条件,我们给出的如下证明也是证明向量组线性无关的典型方法.
转载请注明原文地址:https://jikaoti.com/ti/Q89RFFFM
0
考研数学一
相关试题推荐
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*X=0的基础解系为()
设m×n矩阵A的秩r(A)=m<n,E为m阶单位阵,则
设A是n阶矩阵,r(A)<n,则A必有特征值__________,且其重数至少是__________.
设三元函数,则div(gradu(1,1,1))=()
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,则随机变量X+Y的分布函数()
设f(x)在点x0处不可导,g(x)在点x0处可导,则下列4个函数中在点x0处肯定不可导的是()
已知矩阵A=有两个线性无关的特征向量,则a=_______.
若函数其中f是可微函数,且则函数G(x,y)=()
设封闭曲面S:x2+y2+z2=R2(R>0),法向量向外,则=_____
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α,A(α1+α2)线性无关的充分必要条件是()
随机试题
A.IgG抗体B.IgM抗体C.两者均可D.两者均否引起血管内溶血的抗体
半夏泻心汤的组成药物不包括
肺通气的动力来自
与吸附力关系最密切的因素是
元大都城市格局的主要特点是()。
通报有以下特点()。
下列何项属于行政裁决()。
1919年5月美国实用主义教育哲学的代表人物()来华讲学,实用主义教育思想随之成为全国有影响的教育思潮。
排列语句顺序恰当的是______。①还有摇荡的水草②游人从桥上望去③那鱼就在水草和石头间滑动④可以清晰地看到水下的鹅卵石
计算下列定积分:
最新回复
(
0
)