首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
admin
2016-10-24
7
问题
设f(x)在[a,b]上二阶可导,且f"(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f"(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x一x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://jikaoti.com/ti/PkSRFFFM
0
考研数学三
相关试题推荐
设fˊ(x)存在,求下列函数的导数dy/dx:(1)y=f(x2);(2)y=arctan[f(x)].
选用适当的坐标计算下列三次积分:
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18-2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于6的概率α,并用泊松分布求出α的近似值(小数点后取两位有效数字).[附表]
二元函数在点(0,0)处().
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
下列哪种激素能降低血糖
蔬菜、水果可供给下列维生素,除了()。
对工程网络计划进行优化,其目的是使该工程( )。
在订单匹配原则方面,根据各国证券市场的实践,优先原则主要包括( )。
位于市区的某软件生产企业,经批准实行增值税即征即退政策(企业将退还的税款用于扩大再生产),企业执行新会计准则,主要开发和销售软件产品,拥有固定资产原值6500万元,其中房产原值4000万元,2015年处于所得税两免三减半的第3年,当年发生以下业务:(1)
“把一切知识教给一切人”是由下列哪位教育家提出的?()。
简述急性坏死性溃疡性龈炎的临床表现。
[A]Nodisciplineshaveseizedonprofessionalismwithasmuchenthusiasmasthehumanities.Youcan,Mr.Menandpointsout,beco
BrandRcoffeecosts$3.25perpoundandbrandTcoffeecosts$2.50perpound.ColumnA
TheEndangeredSpeciesActorderstheU.S.FishandWildlifeService,abranchoftheDepartmentoftheInterior,protectspecie
最新回复
(
0
)