首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr …… βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2018-07-31
27
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
……
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
r
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
… β
r
]=[α
1
α
2
… α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
… β
r
]及P=[α
1
α
2
… α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若X满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r—r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
,…,β
r
线性无关→r[β
1
β
2
… β
r
]=r→r(A)=r→|A|≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/Pc2RFFFM
0
考研数学一
相关试题推荐
证明:当0<x<1时,.
设α1=.(1)a,b为何值时,B不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,B可唯一表示为α1,α2,α3,α4的线性组合?
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
随机试题
毛泽东在《论持久战》中指出,中国抗日战争取得胜利最关键的阶段是()
受食物成分影响,母乳喂养者的肠道茵群中主要是
尖锐湿疣的镜下特点不包括
肝脏是代谢的主要组织之一。下列哪种物质不是在肝脏中合成
急性颅内压增高,有脑疝征象时,应立即使用的最佳药物是
与CT检查效果密切相关的工作是()。
下列选项中,属于风险评估工作的是()。
tradefacilitation
A、 B、 C、 BWhichrestaurant?(哪个餐厅?)→回答“都可以”
WirelessHealthCareA)IsitpossiblethatamongalltheadvertisementsaboutApple’siPad,onepotentialusehasbeenoverlooke
最新回复
(
0
)