首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
设α1,α2……αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
admin
2019-08-12
31
问题
设α
1
,α
2
……α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是( )
选项
A、若α
1
,α
2
……α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
……α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
……α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
……α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考查矩阵的乘法和向量组线性相关性.
可用定义分析:λ
1
α
1
+λ
2
α
2
+…+λ
s
α
s
=0中,若存在λ
1
,λ
2
,…,λ
s
是一组不全为零数时,向量组α
1
,α
2
……α
s
是线性相关的;若只有当λ
1
,λ
2
……λ
s
都为零数时,向量组α
1
,α
2
……α
s
是线性无关的.也可用向量组的秩分析:向量组线性相关的充分必要条件是其秩小于向量组中向量的个数.
若α
1
,α
2
……α
s
线性相关,则存在不全为零的数k
1
,k
2
,……,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,在等式的两端左乘矩阵A得k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=A0=0.由于k
1
,k
2
,……,k
s
不全为零,故Aα
1
,Aα
2
……Aα
s
线性相关.
所以A选项正确,B不正确.设α
1
,α
2
……α
s
线性无关,若m=n,且A=E,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
所以C不正确.若A=O,则Aα
1
,Aα
2
,…,Aα
s
线性相关.所以D不正确.故选A.本题也可以用秩分析.
由于(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
……α
s
),所以r(Aα
1
,Aα
2
,…,Aα
s
)=r[A(α
1
,α
2
……α
s
)]≤r(α
1
,α
2
……α
s
).若α
1
,α
2
……α
s
线性相关,则r(α
1
,α
2
……α
s
)<s.于是r(Aα
1
,Aα
2
,…,Aα
s
)<s.故Aα
1
,Aα
2
,…,Aα
s
线性相关.故选项A正确.
转载请注明原文地址:https://jikaoti.com/ti/P0ERFFFM
0
考研数学二
相关试题推荐
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R),证明:若f(0)=1,则f(x)≥ef’(0)x.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=a△x,使
设函数y=y(x)由方程ex+y+cosxy=0确定,则
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
设A是3阶矩阵,满足Aα1=一α1,Aα2=α1+2α2,Aα3=α1+3α2+α3,其中α1=[0,1,1]T,α2=[1,0,1]T,α3=[1,1,0]T.证明A相似于对角矩阵A,求A,并求可逆矩阵P,使得P-1AP=A.
设A是3阶矩阵,有特征值λ1=λ2=一2,λ3=2,对应的特征向量分别是已知β=[3,11,11]T.证明β是A100。的特征向量,并求对应的特征值.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
已知则当时,=______。[img][/img]
(I)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(Ⅱ)将以曲线y=,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
(2004年试题,一)设则f(x)的间断点为x=_________.
随机试题
浓硫酸稀释时只能把水缓缓倒入浓硫酸中,并不断地加以搅拌,切不可反过来。
设计一个图书馆数据库,数据库中对每个借阅者存有:读者号,姓名,地址,性别,年龄,单位。对每本书存有:书号,书名,作者,出版社。对每本被借出的书存有:读者号,借出日期和应还日期。根据上述语义要求,回答下列问题:(1)画出E—R图;
益母草静脉注射后可出现
有关腕骨和手关节的叙述,错误的是
资产负债表不是企业财务统计报表的内容。()
(2013年真题)下列关于权利能力和行为能力的表述,能够成立的有()。
论述教师的基本素养。
当数据的物理结构(存储结构)改变时,不影响数据库的逻辑结构,从而不致引起应用程序的变化,这是指数据的【】。
TASKTWO-COMPLAINTForquestions18-22,matchtheextractswiththecomplaints,listedI-P.Foreachextract,choosethespeak
ClimateChangeMayMakeInsect-BorneDiseasesHardertoControlClimatechangecaninfluencehowinfectiousdiseasesaffect
最新回复
(
0
)