设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得[f(b)-f(ξ)]/(lnξ-lna)=ξf’(ξ).

admin2021-10-18  36

问题 设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得[f(b)-f(ξ)]/(lnξ-lna)=ξf’(ξ).

选项

答案由[f(b)-f(x)]/(lnx-lna)-f’(x)/1/x,得1/xf(b)-1/xf(x)-f’(x)lnx+f’(x)lna=0,或[f(b)lnx-f(x)lnlx+f(x)lna]’=0,辅助函数为φ(x)=f(b)lnx-f(x)lnx+f(x)lna.令φ(x)=f(b)lnx-f(x)lnx+f(x)lna,φ(a)=φ(b)=f(b)lna.由罗尔定理,存在ξ∈(a,b),使得φ’(ξ)=0.而φ’(x)=1/xf(b)-1/xf(x )一f’(x)lnx+f’(x)lna,所以1/ξ[f(b)-f(ξ)]-f’(ξ)(lnξ-lna)=0,即[f(b)-f(ξ)]/(lnξ-lna)-ξf’(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/OtlRFFFM
0

最新回复(0)