首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足求证:f(x)在(0,1)内至少存在两个零点.
admin
2019-02-20
40
问题
设f(x)在[0,1]上连续,且满足
求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令[*]显然G(x)在[0,1]可导,G(0)=0,又 [*] 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(c)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知,[*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数
在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数
证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://jikaoti.com/ti/OmBRFFFM
0
考研数学三
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关.(2)求A的特征值、特征向量.
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明:(1)若α是A的特征向量,则Bα也是A的特征向量.(2)若A有n个不同的特征值,α是A的特征向量,则α也是B的特征向量.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设A为m×n矩阵,B为n×p矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(A┆B).
曲线y=k(x2一3)2在拐点处的法线通过原点,求k的值.
在曲线y=e—x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
假设随机变量X和Y独立同分布.P{X=0}=P{Y=0}=1一p,P{X=1}=P{Y=1}=p.随机变量Z=问p取何值时,X和Z独立?这时X,Y,Z是否相互独立?
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
A为三阶实对称矩阵,A的秩为2,且求A的特征值与特征向量.
某商品的需求价格弹性为|Ep|,某人的收入为M,全部用于购买该商品,求他的需求收入弹性.
随机试题
SET通过()确保信息机密性。
关于婴儿型多囊肾的叙述,下面哪一项是正确的
首选的检查项目是定性诊断应考虑
可能与恶性组织细胞病有关的重要标志是对恶性组织细胞病缺乏特异性诊断价值的是
可以依法单处罚金的情形有:()
包舱人在飞机起飞前取消、变更包舱计划,造成承运人损失的,应由()承担赔偿责任。
货币供给是一个流量概念。()
ThereispubliclibraryineverytowninBritain.41.______Therearebranchlibraryinmanyvillages.
Wheremostlikelyisthespeaker?
Englishistheleadinginternationallanguage.Indifferentcountriesaroundtheglobe,Englishisacquiredasthemothertongue
最新回复
(
0
)