首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2013-03-19
32
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:
对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
要证f’(ξ)-λ[f(ξ)-ξ]=1,即要证[f’(ξ)-1]-λ[f(ξ)-ξ]=0,记φ(x)=f(x)-x,也就是要证φ’(f)-λφ(ξ)=0. 构造辅助函数F(x)=e
-λx
φ(x)=e
-λx
[f(x)-x],不难发现F(x)在[0,η]上满足尔尔定理的全部条件,故存在ξ∈(0,η),使F’(ξ)=0,即e
-λx
[φ’(ξ)-λφ(ξ)]=0,而e
-λx
≠0,从而有φ’(ξ)-λφ(ξ)=0,即f’(ξ)-
解析
转载请注明原文地址:https://jikaoti.com/ti/OScRFFFM
0
考研数学一
相关试题推荐
(13年)设函数f(x)=则y=f(x)的反函数x=f-1(y)在y=0处的导数
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=_______。
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
[2011年]已知函数F(x)=∫0xln(1+t2)dt/xa,设=0,试求α的取值范围.
(15年)设函数f(x)在(一∞,+∞)内连续,其2阶导函数f"(x)的图形如右图所示,则曲线y=f(x)的拐点个数为
(08年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于
设A=(α1,α2,α3,α4)是四阶矩阵,A*为A的伴随矩阵。若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可以是()
[2017年]设A为3阶矩阵,P=[α1,α2,α3]为可逆矩阵,且P-1AP=,则A(α1+α2+α3)=().
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
设3阶矩阵,3维列向量,已知Aα与α线性相关,则a=_________________.
随机试题
聚合物驱注入井在注聚合物后,注入井有注入压力()、注入能力下降的反映。
Universitiesgenerally______theirstudentsfromamongthehighschoolgraduates.
肝昏迷患者神志清楚后蛋白质可从每日20g逐步增加至0.8~1.0g/(kg.d),以动物蛋白为最好。()
A.风寒咳嗽B.风热咳嗽C.寒痰咳嗽D.热痰咳嗽E.上实下虚的咳喘证止嗽散主治的病证是()。
下列关于房产税纳税人的说法中,正确的是()。
申请个人经营贷款时,负责在调查人提供的调查资料基础上,对贷款业务的合规性审查的是银行的()
[*]
下面表达式中,运算结果为12的是:
有三个关系R、S和T如下:其中关系T由关系R和S通过某种操作得到,该操作为
Choosethecorrectletter,A,BorC.Therestaurantisfamousfor
最新回复
(
0
)