(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n. 证明:AB和BA有相同的特征值,且AB~BA; (II)对一般的n阶矩阵A,B,是否必有AB~BA?说明理由.

admin2014-04-16  42

问题 (I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.
证明:AB和BA有相同的特征值,且AB~BA;
(II)对一般的n阶矩阵A,B,是否必有AB~BA?说明理由.

选项

答案(1)因A有n个互不相同的非零特征值,|A|=n!≠0,站A可逆,从而有|λE-AB|=|A(λA-1-B)|=|A||λE-BA-1|=|λE-BA|.即AB和BA有棚同的特征多项式,故有相同的特征值.又若取可逆阵P=A,则有P-1ABP=A-1ABA-1=BA.故有AB~BA. (Ⅱ)一般AB≠BA,例如,[*]则有[*]显然r(AB)=0,r(BA)=1,故AB≠BA. (1)要证明相似,应找出可逆阵P,使得P-1ABP=BA.(2)要说明可能不相似,只要举出一个反例即可.由(I)已知A可逆时,必有AB~BA,故举反例应举A是不可逆矩阵.(3)相似必有相同的λ,但λ相同不一定相似.

解析
转载请注明原文地址:https://jikaoti.com/ti/OSDRFFFM
0

最新回复(0)