首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
设k为参数,试确定方程χ2+4χ=keχ的根的个数以及每个根所在的区间.
admin
2018-06-12
41
问题
设k为参数,试确定方程χ
2
+4χ=ke
χ
的根的个数以及每个根所在的区间.
选项
答案
转化为函数方程F(χ)=(χ
2
+4χ+1)e
-χ
οk,为此需讨论函数F(χ)的增减性,极值与值域. 由F′(χ)=(2χ+4-χ
2
-4χ-1)e
-χ
=(3-2χ-χ
2
)e
-χ
=(3+χ)(1-χ)e
-χ
可知,函数F(χ)有两个驻点χ=-3与χ=1,结合[*]F(χ)=+∞与[*]F(χ)=0可列表讨论F(χ)的单调性与极值如下: [*] 函数F(χ)的示意图如图6—1. [*] 由此可得结论: (1)当k>[*]时直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标χ
1
<-3,即当k>[*]时方程χ
2
+4χ+1=ke
χ
有唯一根,此根位于区间(-∞,-3)内. (2)当k=[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,一个交点的横坐标χ
1
<-3,而另一个交点的横坐标χ
2
=1,即当k=[*]时,方程χ
2
+4χ+1=ke
χ
有两个根,一个位于区间(-∞,-3)内,另一个是χ
2
=1. (3)当0<k<[*]时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有三个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<1,χ
3
>1,即当0<k<[*]时,方程χ
2
++4χ+1=ke
χ
有三个根,分别位于区间(-∞,-3),(-3.1).(1.+∞)内. (4)当-2e
3
<k≤0时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有两个交点,其横坐标分别为χ
1
<-3,-3<χ
2
<0,即当-2e
3
<k≤0时方程χ
2
+4χ+1=ke
χ
有两个根,分别位于区间(-∞,-3),(-3,0)内. (5)当k=-2e
3
时,直线y=k与曲线y=(χ
2
+4χ+1)e
-χ
有一个交点,其横坐标为χ
1
=-3,即这时方程χ
2
+4χ+1=ke
χ
有唯一根χ
1
=-3. (6)当k<-2e
3
时,直线y=k与曲线y=(y
2
+4χ+1)e
-χ
无交点,即此时方程χ
2
+4χ+1=ke
χ
无根.
解析
转载请注明原文地址:https://jikaoti.com/ti/ON2RFFFM
0
考研数学一
相关试题推荐
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P-1AP=∧.
设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为ξ1=,求A.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
已知α1=(1,4,2)T,α2=(2,7,3)T,α3=(0,1,a)T可以表示任意一个3维向量,则a的取值是_______.
已知A=,B是3阶非零矩阵,且BAT=O,则a=_______.
方程组的通解是________
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设f(χ)在(-∞,+∞)是连续函数,(Ⅰ)求初值的解y=φ(χ);(Ⅱ)求证y(χ)=∫0χφ(t)f(χ-t)dt是初值问题的解;(Ⅲ)求y〞+y′=f(χ)的通解.
随机试题
背景天津某单层钢结构厂房工程,基础部分采用锤击打入预应力管桩、部分采用泥浆护壁灌注桩。桩承台上预埋地脚螺栓与钢柱连接。预应力管桩打入过程中,发现桩身突然倾斜错位,经查桩尖处土质条件没有特殊变化,而贯入度突然增大;同时,当桩锤跳起后,桩身随之出现回弹现象
以河流为给水水源的集中式给水,必须严格控制上游不得排放污染物。
使用1:213的碘伏作为表面消毒剂时推荐接触时间是
9个月男婴,腹泻2天,大便每日15~16次,蛋花汤样,精神委靡,眼泪少,尿少,呼吸陕,唇红,血钠138mmol/L,皮肤弹性差。诊断为
关于我国证券交易所的说法,正确的是()。
监理人应与承包人共同进行()。
关于建设工程索赔程序的说法,正确的是()。
导向性原则
模拟信号与数字信号的划分是依据(59)。
【B1】【B18】
最新回复
(
0
)