设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.

admin2017-12-31  53

问题 设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.

选项

答案(1)因为r(A)=n-1,又b=α1+α2+…+αn,所以r[*]=n-1, 即r(A)=r[*]=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α1+2α2+…+(n-1)αn-1=0,所以α1+2α2…+(n-1) αn-1+0αn=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)T, 又因为b=α1+α2…+αn,所以方程组AX=b有特解η=(1,1,…,1)T, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)T+(1,1,…,1)T(k为任意常数).

解析
转载请注明原文地址:https://jikaoti.com/ti/OIKRFFFM
0

最新回复(0)