首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
admin
2018-09-20
42
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由积分中值定理知,至少存在一点c∈(a,b),使得 [*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0, G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b), 使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
1
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f"(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
)[*](a,b),使得F’(η)=0,故有 f”(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://jikaoti.com/ti/OEIRFFFM
0
考研数学三
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)一aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:|∫01f(x)dx一
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设S(x)=∫0x|cost|dt.证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);
设{nan}收敛,且n(an一an一1)收敛,证明:级数an收敛.
随机试题
孙先生因急性心肌梗死入院,需心电监护。该措施属于
妊娠期妇女一般不要做,除了
小儿前囟闭合的时间约在
患者,女性,35岁。葡萄胎清宫术后4个月,血hCG明显高于正常,胸部X线片显示片状阴影,最可能的诊断是
以下属于确定城市发展性质依据的有()。
河南某粮油进出口公司向俄罗斯出口一批小麦,经洽谈后双方商定,俄罗斯公司进口小麦2000吨,每吨120美元,数量可增减10%。合同签订后,俄罗斯进口商开来信用证的金额规定为240000美元,数量为2000吨。这种情况,在不修改信用证的情况下,我公司可发运(
斯沃思的关于婴儿对母亲的依恋类型表现最多的是()
[*]
在外部设备中,扫描仪属于()。
Thoseofusinvolvedintheinternationalizationofhighereducationrelyonaseriesofassumptionsthatareoftennotsupport
最新回复
(
0
)