设A,B均为正定矩阵,则( )

admin2019-08-12  29

问题 设A,B均为正定矩阵,则(    )

选项 A、AB,A+B都正定。
B、AB正定,A+B非正定。
C、AB非正定,A+B正定。
D、AB不一定正定,A+B正定。

答案D

解析 由A,B均为正定矩阵可知,对任意x≠0,总有xTAx>0,xTBx>0,于是xT(A+B)x=xTAx+xTBx>0,所以A+B正定。
因为矩阵的乘法不满足交换律,所以AB不一定是对称矩阵,于是AB不一定正定。例如:A=,则A,B均为正定矩阵,但AB≠BA,即AB不是对称矩阵,所以AB不是正定矩阵,故选D。
转载请注明原文地址:https://jikaoti.com/ti/NwERFFFM
0

最新回复(0)