设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T. 求矩阵A.

admin2016-01-11  14

问题 设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T
求矩阵A.

选项

答案令矩阵[*]

解析 本题主要考查实对称矩阵对角化的逆问题,即由矩阵A的特征值和特征向量如何求A.利用实对称矩阵的属于不同特征值的特征向量均正交,可求得A的属于特征值3的特征向量,设为α3,记P=(α123),有,故A=PAP一1
转载请注明原文地址:https://jikaoti.com/ti/NuDRFFFM
0

最新回复(0)