首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:E∈(a,b),使f’’(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g’’(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:E∈(a,b),使f’’(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g’’(ξ)=0.
admin
2019-07-19
15
问题
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:E∈(a,b),使f’’(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g’’(ξ)=0.
选项
答案
令F(x)=f(x)g(x),在x=a点展开泰勒公式. F(x)=F(a)+F’(a)(x-a)+[*]F’’(ξ)(x-a)
2
(a<ξ<x). ① 令x=b,代入①式,则 F(b)=F(a)+F’(a)(b-a)+[*]F’’(ξ)(b-a)
2
(a<ξ<b). ② 因f(a)=f(b)=g(a)=0,则F(a)=F(b)=0,且F’(a)=0,代入②式,得F’’(ξ)=0.即 f’’(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g’’(ξ)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/NtQRFFFM
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),且P{|X-μ1<1}>P{|Y-μ2|<1)则必有()
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=O的三个线性无关的解向量,则()为AX=O的基础解系.
设有微分方程y’—2y=φ(x),其中φ(x)=,在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设随机变量X的概率密度为f(x)=ce-x2,-∞<x<+∞,则c=()
试求下列幂级数的收敛域:
设点A(1,一1,1),B(一3,2,一1),C(5,3,一2),判断三点是否共线,若不共线求过三点的平面的方程.
设有直线则L1与L2的夹角为()
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
设f(x)有二阶连续导数,且f’(0)=0,=1,则()
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=_________.
随机试题
TheSingaporeundergroundtrainsystem,knownastheMRT,offersaspeedyandeasywaytogetaboutourcity.You’llneedsmall
In,a(n)______lawwaspassedbytheUnitedNationstostoppeopleputtingwasteintosea.
不属于滴虫性阴道炎临床表现的是
下列选项中,哪项属于牙周疾病三级预防()
下列关于直线制组织形式的说法正确的有()。
背景:某住宅工程,建筑面积22000m2,地上19层,地下2层,现浇混凝土剪力墙结构。筏板基础,基础埋深8.4m。东侧临边为城市主干道。由某建筑工程公司施工总承包。工程施工过程中项目部根据工程特点制定了洞口、临边防护等专项施工方案。施工过程中发生了如下事
制造型企业的CIMS通常包括的分系统是()。
历史上,“劣币驱逐良币”现象发生在()阶段。
下列不属于清初“三藩”的是()。
AsfarbackasIcanremember,theglassjar【C1】______onthefloorbesidethesmall【C2】______inmyparents’room.Dadwould【C3】_
最新回复
(
0
)