首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-08-12
29
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
一α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
一α
3
=β知
即γ
1
=(1,2,一1,0)
T
是Ax=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
也均是Ax=β的解,那么η
1
=γ
1
一γ
2
=(0,1,一2,一1)
T
,η
2
=γ
3
一γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关.于是Ax=0至少有两个线性无关的解向量,有n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://jikaoti.com/ti/NoERFFFM
0
考研数学二
相关试题推荐
计算其中D由直线x=一2,y=0,y=2以及曲线所围成.
在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0距离最短.
(2006年)设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否为正定矩阵?
设矩阵A=相似.(1)求a,b的值;(2)求一个可逆矩阵P,使P-1AP=B.
计算[1+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=一1所围成的区域,f(x,y)是连续函数.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点P关于L的对称点Q的坐
方程y(4)一2y’"一3y"=e-3x一2e-x+x的特解形式(其中a,b,c,d为常数)是()
已知数列{xn}的通项n=1,2,….证明
随机试题
液压式动力转向系统中当油泵有故障不能正常工作时,汽车将不能实现转向。()
X线片上最易与周围型肺癌相混淆的肺结核病是
关于补体的叙述,错误的是
痫证的主要病理基础在于
结算风险基金从证券登记结算机构的业务收入、收益中提取。()
下列关于房地产开发企业预提(应付)费用的企业所得税处理,正确的是()。
关于技术性失业的说法,错误的是()。
旅行社刚刚为三位旅客预定了飞机票。这三位旅客是荷兰人比尔、加拿大人伯托和英国人丹皮。他们三人一个去荷兰、一个去加拿大、一个去英国。据悉比尔不打算去荷兰,丹皮不打算去英国,伯托既不去加拿大,也不去英国。所以:( )。
风险价值
TheAmericanideaofrespectinghumanrightscamefromseveralsources.First,thecolonistshadbeen【B1】______oftheirrightsi
最新回复
(
0
)