首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-01-19
44
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解; ②(2)的解必是(1)的解;
③(1)的解不是(2)的解; ④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘该式的两边得kA
n
α=0,由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0,因此α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
综上可知本题应选A。
转载请注明原文地址:https://jikaoti.com/ti/NgBRFFFM
0
考研数学三
相关试题推荐
设连续型随机变量X的密度函数为(1)常数a,b,c的值;(2)Y=eX的数学期望与方差.
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
已知矩阵A=与对角矩阵相似,求An.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
设随机变量X1和X2各只有一1,0,1等三个可能值,且满足条件P{Xi=一1}=P{Xi=1}=(i=1,2).试在下列条件下分别求X1和X2的联合分布.(1)P{X1X2=0}=1;(2)P{X1+X2=0}=
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
随机试题
健康教育与卫生宣传二者的关系是【】
62岁女性,全身骨痛,血浆总蛋白143g/L,清蛋白39g/L,最可能的诊断是
正常人99mTc-IgG延迟显像时,无明显放射性浓聚的部位是
可采用土层锚杆和锚索作为使用年限超过2年的永久性支护的工程土层条件是()。
1998年—2002年,我国出现通货紧缩的经济形势,为反通货紧缩,我国采取相应的宏观调控措施,使经济从2003年开始至今出现良好的发展势头。根据以上材料回答下列问题:为治理通货紧缩,我国适时地实行了()的货币政策。
根据以下资料,回答问题。打字人员在抄录上表时因粗心输错了一个数据,该数据可能是()。
美国的一个动物保护组织试图改变蝙蝠在人们心目中一直存在的恐怖形象。这个组织认为,蝙蝠之所以让人觉得可怕而遭到捕杀,仅仅是因为这些羞怯的动物在夜间表现得特别活跃。以下哪项如果为真,将对上述动物保护组织的观点构成最严重的质疑?()
下面可能存在缔约过失责任的情形的是()。
电脑对社会行为有着深刻的影响。计算机处理的触手可及,使得那些在其他方面都被认为是好市民的人发现自己沉迷在不道德行为,甚至是非法行为中。对有版权软件的盗版行为四处可见,而近期大量报道的如黑客人侵、病毒制造、电脑行骗以及侵犯隐私等等事件,使得要求电脑业拥有新道
设曲线y=f(x)与y=∫0arctanxe-t2dt在原点处有相同切线,则=________.
最新回复
(
0
)