首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2018-05-25
37
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A的另一个特征值为λ
1
=-1. 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://jikaoti.com/ti/NMKRFFFM
0
考研数学三
相关试题推荐
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
-2arctan[*]+C,其中C为任意常数=-2arctant+C=-2arctan+C.
若x>-1.证明:当0<a<1时,有(1+x)α<1+αx;当α<0或α>1时,有(1+x)α>1+ax.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y-Z的相关系数.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设则f(x)在x=0处
随机试题
下列函数在[-1,1]上满足罗尔定理条件的是()
在络合滴定中,在何种情况下不能采用直接滴定的方式?请举例说明。
胆囊癌的特点不包括
多边开发银行统一版《施工合同条件》包括(),方便用户的理解和使用。
下列属于外国投资者并购境内企业,安全审查的范围的有()。
企业的产品标准,应在发布后()日内办理备案。
WilsonstooddazedinthemiddleofTimesSquare,______ofthecrowdsthatsurroundedhim.
GregWoodburn,asophomoreattheUniversityofSouthernCalifornia,spendsalotoftimecleaningsneakers.Someofthemonceb
Thetrafficpolice______(正在搜索证据以证明被告有错,可结果却是徒劳).
A、Moreandmorepeoplegointothecollege.B、Theproportionofgirlstudentsisgrowing.C、Noteveryoneissuitableforcollege
最新回复
(
0
)