首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
admin
2018-01-26
21
问题
讨论a,b为何值时,方程组
无解?有解?有解时写出全部解。
选项
答案
用初等行变换把增广矩阵化为行阶梯形矩阵,即 [*] 可见,当a≠1时,R(A)≠R(A,b),方程组无解。 当a=1且b≠-1时,R(A)=R(A,b)=3,方程组有唯一解,由 [*] 得唯一解为x
1
=3,x
2
=1,x
3
=0。 当a=1且b=-1时,R(A)=R(A,b)=2<3,方程组有无穷多解。由 [*] 得同解方程组为 [*] 选x
3
为自由变量,对应的齐次线性方程组的基础解系为ξ=(-1,1,1)
T
,方程组的一个特解为η=(3,1,0)
T
,所以方程组的通解为 x=η+kξ,其中k为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/NCVRFFFM
0
考研数学一
相关试题推荐
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设B是3阶非零阵,且AB=0,则Ax=0的通解是__________.
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知线性方程组方程组有解时,求出方程组的全部解.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
随机试题
行政组织总体设计依据中的基本因素为()
分辨率为5LP/mm时,其线径为
A.中切牙B.侧切牙C.尖牙D.第一磨牙E.第二磨牙牙合力最小的牙齿是
火力发电厂厂用低压电动机断路器的瞬时或短延时脱扣器的整定电流应()。
在项目评估的总结评价中,投资项目评估报告后评价的重点内容是()。
《中华人民共和国环境保护法》中所称环境是指()。
建立高效的风险管理部门应当固守的两个基本准则是()。
新材料科学技术是高科技的基础,它的一个标志技术是半导体技术。()
背景材料:警方得知潜逃9年的嫌疑人慕某(化名)将举行婚礼,立即展开调查。婚礼前一天,便衣民警查到慕某可能租用的婚车。一路上便悄悄对婚车进行跟踪。婚礼当天上午迎亲时,跟踪婚车的民警传回消息:“婚车上穿深色衬衣的就是慕某。不会错。”这时,民警已经可以对慕某实施
A、TeensshouldusetheInternetasanimportanttooloftheirdailylife.B、Teensshouldtakeregularbreaksfromtheircomputer
最新回复
(
0
)