首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f′(ξ)=1; (2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明: (1)存在ξ∈(0,1),使得f′(ξ)=1; (2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
admin
2019-08-12
38
问题
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:
(1)存在ξ∈(0,1),使得f′(ξ)=1;
(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
选项
答案
(1)令h(χ)=f(χ)-χ, 因为f(χ)在[-1,1]上为奇函数,所以f(0)=0, 从而h(0)=0,h(1)=0, 由罗尔定理,存在ξ∈(0,1),使得h′(ξ)=0, 而h′(χ)=f′(χ)-1,故ξ∈(0,1),使得f′(ξ)=1. (2)令φ(χ)=e
χ
[f′(χ)-1], 因为f(χ)为奇函数,所以f′(χ)为偶函数,由f′(ξ)=1得f′(-ξ)=1. 因为φ(-ξ)=φ(ξ),所以存在η∈(-ξ,ξ)[*](-1,1),使得φ′(η)=0, 而φ′(χ)=e
χ
[f〞(χ)+f′(χ)-1]且e
χ
≠0, 故f〞(η)+f′(η)=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/MoERFFFM
0
考研数学二
相关试题推荐
交换积分次序
方程=0的全部根是_______.
设4阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4都是4维列向量,且|A|=4,|B|=1,则|A+B|=_______.
(12)已经知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.(Ⅰ)求实数a的值;(Ⅱ)求正交变换x=QY将f化为标准形.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设A、B均为n阶矩阵,且AB=A-B,A有n个互不相同的特征值λ1,λ2,…,λn,证明:(1)λi≠-1(i=1,2,…,n);(2)AB=BA;(3)A的特征向量都是B的特征向量;(4)B可相似对角化.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x);
已知方程组及方程组(Ⅱ)的通解为k1[一1,1,1,0]T+k2[2,一1,0,1]T+[一2,一3,0,0]T,k1,k2为任意常数.求方程组(I),(Ⅱ)的公共解.
求函数y=excosx的极值.
设数列则当n→∞时,xn是
随机试题
简述竞争对手分析的四个方面。
为患者进行吸痰时不妥的是()。
女性,50岁。因患短肠综合征,予全胃肠外营养(1FPN)治疗。应用l周时患者出现昏迷,但尿内无酮体。患者既往曾有空腹血糖高(11mmol/L)病史。此瘸的预防主要是
下列属于热原污染途径的错误说法的是()
现场施工准备的质量控制中关于施工图纸的现场核对,应核对( )。
申请领取施工许可证,应当具备下列条件:( )。
在拟订航次租船合同条款时,为什么代理人的经纪人必须列明委托人的名称、住址或主要营业场所地址?
纳税人不能提供完整、准确的收入及成本、费用凭证,不能正确计算其应纳税所得额的,由税务机关核定其应纳税所得额。核定的方法有( )。
按照通信专业划分,通信业务资费主要包括()。
卡车司机甲在行车途中,被一吉普车超过,甲顿生不快,便加速超过该车。不一会儿,该车又超过了甲,甲又加速超过该车。当该车再一次试图超车行至甲车左侧时,甲对坐在副座的乙说:“我要吓他一下,看他还敢超我。”随即将方向盘向左边一打,吉普车为躲避碰撞而翻下路基,司机重
最新回复
(
0
)