首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为( )
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C1与C2是两个任意常数,则该非齐次线性微分方程的通解为( )
admin
2017-11-30
40
问题
设P(χ),q(χ),f(χ)均是关于χ的连续函数,y
1
(χ),y
2
(χ),y
3
(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的3个线性无关的解,C
1
与C
2
是两个任意常数,则该非齐次线性微分方程的通解为( )
选项
A、(C
1
+C
2
)y
1
+(C
2
-C
1
)y
2
+(1-C
2
)y
3
B、(C
1
+C
2
)y
1
+(C
2
-C
1
)y
2
+(C
1
-C
2
)y
3
C、C
1
y
1
+(C
2
-C
1
)y
2
+(1-C
2
)y
3
D、C
1
y
1
+(C
2
-C
1
)y
2
+(C
1
-C
2
)y
3
答案
C
解析
将选项C改写为C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
3
。作为非齐次方程的解,只需要满足C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)是对应的齐次方程组的通解,因此只需要证明(y
1
-y
2
)与(y
2
-y
3
)线性无关即可。
假设(y
1
-y
2
)与(y
2
-y
3
)线性相关,即存在不全为零的数k
1
和k
2
使得
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0,
即k
1
y
1
+(k
2
-k
1
)y
2
-k
2
y
3
=0。
由于y
1
,y
2
,y
3
线性无关,则根据上式可得k
1
=k
2
=0,与k
1
和k
2
不全为零矛盾,因此(y
1
-y
2
)与(y
2
-y
3
)线性无关,可见选项C是非齐次微分方程的通解。故选C。
转载请注明原文地址:https://jikaoti.com/ti/MlVRFFFM
0
考研数学一
相关试题推荐
求幂级数的和函数.在(a,b)内至少存在一点η,η≠ξ,使得f’’(η)=f(η).
求幂级数的和函数.在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
设则有()
若f(x)在a,b]上二阶可微,且f’’(x)>0,则f(x)为[a,b]上的凹函数;
设A为m×n阶矩阵,且r(A)=m<n,则().
设随机变量(X,Y)的联合密度函数为设Z=X+Y,求Z的概率密度函数.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
)设β、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩r(A)≤2;(II)若α,β线性相关,则秩r(A)<2.
已知{an)是单调增加且有界的正数列,证明:级数收敛.
计算曲面积分2(1-xy)dydz+(x+1)ydzdx-4yz2dxdy,其中∑是弧段(1≤x≤3)绕x轴旋转一周所得的旋转曲面,∑上任一点的法向量与x轴正向夹角大于
随机试题
TheweatherinTexasmayhavecooledsincetherecentextremeheat,butthetemperaturewillbehighattheStateBoardofEduca
在Windows7中可以打开多个窗口,但这些窗口中只可能有一个处于活动状态。()
专业分包人须在进场前,将其承包范围内的施工组织设计报技术部,由()后方可依照施工。
Anyinternationaltransactionshouldstartwithseekingcustomers.()
资料:F公司经营多种产品,最近两年的财务报表数据摘要如下(单位:万元):要求: 进行以下计算、分析和判断(提示:为了简化计算和分析,计算各种财务比率时需要的存量指标如资产、所有者权益等,均使用期末数;一年按360天计算): (1
“社会工作服务有益于个人提升自己的权能,你愿意接受社会工作服务吗”,这个问题不符合问卷的()规定。
除了目光接触外,()也是一种可完成精细信息沟通的体语形式。
【2015广西】课程的总体规划是()。
2,一8,24,一48,48,()
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
最新回复
(
0
)