首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
admin
2017-09-18
36
问题
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
选项
答案
教学过程 ①一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书) (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。) 学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? ②一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开.看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。 引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? ③一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫作三角形的中位线。(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言) 学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,[*]DE=0.5BC,DF=AC,EF=0.5AB… 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书) 师:如何证明这个猜想的命题呢? 生:先将文字问题转化为几何问题然后证明。 已知:DE是ABC的中位线,求证:DE//BC、DE=0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下) 生1:延长DE到F使EF=DE,连接CF 由[*] 得AD=FC从而BD=FC 所以,四边形DBCF为平行四边形得DF==BC,可得DE=0.5BC(板书) 生2:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即[*],可得BD=CF,得DBCF为平行四边形。得DF=BC可得DE=0.5BC 生3:延长DE到F使DE=EF,连接AF、CF、CD,可得AD=CF 得DB=CF 得DF=BC 可得DE=0.5BC 生4:利用[*]且相似比为1:2 可得DE=0.5BC 师:很好,好极了! ④一种思考——课堂因你而添彩 问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边.且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证) ⑤一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃) ⑥一句总结——课堂因你而彰显无穷魅力 学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业) ⑦课后反思 本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
解析
转载请注明原文地址:https://jikaoti.com/ti/Maz9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
漫画表明对同一事物人们有不同的认识,这是因为()。①客观事物具有复杂性②认识有先进与落后之分③认识受到人们立场的限制④真理是绝对的.不是相对的
2017年春,全国各地所有大中小学段、所有相关学科、所有国家课程和地方课程的教材,都将八年抗战统一改为十四年抗战,以全面反映日本侵华罪行。确立“十四年抗战”有利于()。①学生全面真实地认识中华民族的抗战历史②弘扬伟大的抗战精神,唤起
当前,我国正走在实现中华民族伟大复兴中国梦的新长征路上,中国共产党要求广大党员干部要“不忘初心”,努力创造无愧于时代、无愧于人民的新业绩。这要求广大党员干部应该()。①代表人民行使管理国家的权力②创新参政议政的方法和途径③
网络空间是亿万民众共同的精神家园,维护互联网的良好秩序是广大民众的共向心声。第十二届全国人大常委会第十五次会议初次审议了《中华人民共和国网络安全法(草案)》,而后该草案在中国人大网公布,向社会公众征求意见。这表明()。
在新的历史条件下,弘扬雷锋精神、开展学雷锋活动,要不断赋予雷锋精神新的时代内涵。今天,雷锋勤俭节约的美德可以转化为低碳、节能等环保意识,雷锋助人为乐的品质可以转化为奉献、互助等志愿精神。材料体现的哲学原理是()。①价值选择和价值判断没有统一、客观
《诗经》中的“夙夜在公”、贾谊的“国而忘家”、范仲淹的“先天下之忧而忧”、林则徐的“苟利国家生死以”等,体现了一脉相承的精神内涵。下列事件与这种精神最相契合的是()。
射手向区间[0,1]射击一次,落点服从均匀分布,若射中[0,]区间,则观众甲中奖;若射中[x,]区间,则观众乙中奖。若甲中奖和乙中奖这两个事件是独立的,求x的值。
极限的值是()。
已知曲面方程为x2+y2+z22x+8y+6z=10,则过点(5,—2,1)的切平面方程为()。
随机试题
某患者喜食辛辣之物,近期不断熬夜,并伴有不寐,心烦,口干,舌燥,口舌生疮,小便短赤等表现。按照脏象理论学说,回答以下问题。该患者的病症影响的脏腑是()。
Theywillfinishthetaskbeforethedeadline________theyaregivenenoughsupport.
面部上唇周围和鼻部的疖可引起
痛经的辨证主要根据
信用证支付方式应由开证行承担独立付款责任,其付款义务不同于汇票付款人的义务。如果信用证规定使用汇票,依LJCP600的规定,有关该汇票的下述说法中正确的是哪些?()
企业在销售商品过程中发生的包装费、保险费等,应计入()。(19.2)
在SWOT分析法中,企业的劣势是指()。
UnderstandingAutism1Autism(孤独症)isalife-longdevelopmentaldisabilitythatpreventsindividualsfromproperlyunderstanding
A、Theycan’ttrainmanymedicalcareexperts.B、Medicalworkersareattractedtoricherplaces.C、Theydon’thavefavorablepoli
A、Debtowedbydevelopedcountries.B、Debtowedbycountriesaroundtheglobe.C、Debtowedbydevelopingcountries.D、Debtowed
最新回复
(
0
)